Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengkui Pei is active.

Publication


Featured researches published by Fengkui Pei.


Toxicology and Applied Pharmacology | 2009

Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy

Lai Wei; Peiqiu Liao; Huifeng Wu; Xiaojing Li; Fengkui Pei; Weisheng Li; Yijie Wu

The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of (1)H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. (1)H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Krebs cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.


Toxicology and Applied Pharmacology | 2008

Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

Lai Wei; Peiqiu Liao; Huifeng Wu; Xiaojing Li; Fengkui Pei; Weisheng Li; Yijie Wu

Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The 1H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Krebs cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-d-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.


Fullerene Science and Technology | 1997

Synthesis and Solvent Enhanced Relaxation Property of Water-Soluble Endohedral Metallofullerenols

Zhang Sg; Dayong Sun; Xinyu Li; Fengkui Pei; Shuying Liu

Abstract Gadolinium fullerenols, as novel and potential contrast agents for magnetic resonance imaging, were synthesized, which showed excellent efficiency in enhancing water proton relaxation with a relaxivity of 47.0±1.0 mM−1.s−1.


Bioorganic & Medicinal Chemistry | 2003

Comparison between Gd-DTPA and several bisamide derivatives as potential MRI contrast agents.

Jianghua Feng; Guoying Sun; Fengkui Pei; Maili Liu

Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D(2)O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.


Journal of Inorganic Biochemistry | 2002

Comparison between GdDTPA and two gadolinium polyoxometalates as potential MRI contrast agents

Jianghua Feng; Guoying Sun; Fengkui Pei; Maili Liu

Two gadolinium polyoxometalates, Gd(2)P(2)W(18)O(62) and K(15)[(GdO)(3)(PW(9)O(34))(2)], have been evaluated by in vivo as well as in vitro experiments as the candidates of tissue-specific magnetic resonance imaging (MRI) contrast agents. T(1)-relaxivities of 28.4 mM(-1).s(-1) for Gd(2)P(2)W(18)O(62) and 11.2 mM(-1).s(-1) for K(15)[(GdO)(3)(PW(9)O(34))(2)] (400 MHz, 25 degrees C) were higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin were also reported. The favorable liver-specific contrast enhancement and renal excretion capability in in vivo MRI with Sprague-Dawley rats after i.v. administration of K(15)[(GdO)(3)(PW(9)O(34))(2)] was demonstrated. In vivo and in vitro assay showed that K(15)[(GdO)(3)(PW(9)O(34))(2)] is a promising liver-specific MRI contrast agent. However, Gd(2)P(2)W(18)O(62) did not show the favorable quality in vivo as expected from its high relaxivity in vitro, which was attributed to low bioavailability, indicating that it is of limited value as tissue-specific MRI contrast agent.


Magnetic Resonance Imaging | 2002

An evaluation of gadolinium polyoxometalates as possible MRI contrast agent

Jianghua Feng; Xiaojing Li; Fengkui Pei; Guoying Sun; Xu Zhang; Maili Liu

Two gadolinium polyoxometalates, K(9)GdW(10)O(36) and K(11)[Gd(PW(11)O(39))(2)], have been evaluated both in vivo and in vitro as candidates for tissue-specific MRI contrast agents. T(1)-relaxivities of 6.89 mM(-1). s(-1) for K(9)GdW(10)O(36) and 5.27 mM(-1). s(-1) for K(11)[Gd(PW(11)O(39))(2)] are slightly higher than that of the commercial MRI contrast agent (Gd-DTPA). Both compounds bind with bovine serum albumin and human serum transferrin and favorable liver-specific contrast enhancement in in vivo MRI with Sprague-Dawley rats after i.v. administration has been demonstrated. Imaging studies demonstrate that the two agents have a long residence time, showing MR signal enhancement in the liver for more than 40 min, longer than commercially available contrast agents. In vivo and in vitro assays showed that GdW(10) and Gd(PW(11))(2) are promising liver-specific MRI contrast agents and GdW(10) may be used in the diagnosis of the pathological state. However, with the higher acute toxicity, the two gadolinium polyoxometalates need to be modified and studied further before clinical use.


Polyhedron | 1999

NMR relaxation studies of GdDTPA in human serum albumin solution

Xinyu Li; Xiaojing Li; Zhang Sg; Fengkui Pei

The water relaxation enhancement behavior of GdDTPA in human serum albumin (HSA) solution has been studied. The results indicate that GdDTPA can integrate noncovalently with HSA, mainly in forms of (GdDTPA)HSA and (GdDTPA),HSA, for which the apparent equilibrium constants are 0.05 mM(-1) and 0.02 mM(-2), respectively


Journal of Rare Earths | 2006

Comparison of biochemical effects induced by Changle between male and female rats using NMR and ICP-MS techniques

Huifeng Wu; Xiaojing Li; Jianghua Feng; Weisheng Li; Zhongfeng Li; Peiqiu Liao; Yijie Wu; Fengkui Pei

Metabolic profiles caused by rare earth complex were investigated using NMR and ICP-MS techniques. Male and female Wistar rats were treated orally with Changle (A kind of rare earth complex applied in agriculture to raise the production of crops) at dose of 2, 5 and 20 mg (.) kg(-1) body weight/day respectively for 90 d. Urine and serum samples are collected on 90 d. The relative concentrations of important endogenous metabolites in urine and serum are determined from H-1 NMR spectra and the contents of the four rare earth elements ( La, Ce, Pr and Nd) constituting Changle in the serum samples are measured by ICP-MS technique. Changle-induced renal and liver damage in rats is found based on the increase in the amounts of the amino acids, trimethylamine N-oxide, N, N-dimethyglycine, dimethylamine, succinate, aketoglutarate and ethanol as well as rare earth concentrations. The similarities and differentiations are found in the alteration patterns of metabolites and rare earth concentrations in serum.


Carbohydrate Research | 2008

Synthesis and evaluation of Gd-DTPA-labeled arabinogalactans as potential MRI contrast agents

Weisheng Li; Zhongfeng Li; Fengying Jing; Yuefeng Deng; Lai Wei; Peiqiu Liao; Xiangguang Yang; Xiaojing Li; Fengkui Pei; Wang X; Hao Lei

Arabinogalactan derivatives conjugated with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A2) or hexylamine (Gd-DTPA-CMAG-A6) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), 13C nuclear magnetic resonance (13C NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Relaxivity studies showed that arabinogalactan-bound complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA, and the influence of the spacer arm lengths on the T1 relaxivities was studied. Their stability was investigated by competition study with Ca2+, EDTA, and DTPA. MR imaging of Wistar rats showed remarkable enhancement in rat liver and kidney after i.v. injection of Gd-DTPA-CMAG-A2 (0.079+/-0.002 mmol/kg Gd3+): The mean percentage enhancement of the liver parenchyma and kidney was 38.7+/-6.4% and 69.4+/-4.4% at 10-30 min. Our preliminary in vivo and in vitro study indicates that the arabinogalactan-bound complexes are potential liver-specific contrast agents for MRI.


Journal of Rare Earths | 2009

Biochemical effects of gadolinium chloride in rats liver and kidney studied by 1H NMR metabolomics

Peiqiu Liao; Lai Wei; Huifeng Wu; Weisheng Li; Yi-Jie Wu; Xiao-Jing Li; Jiazuan Ni; Fengkui Pei

The biochemical effects of gadolinium chloride were studied using high-resolution H-1 nuclear magnetic resonance (NMR) spectroscopy to investigate the biochemical composition of tissue (liver and kidney) aqueous extracts obtained from control and gadolinium chloride (GdCl3) (10 and 50 mg/kg body weight, intraperitoneal injection. i.p.) treated rats. Tissue samples were collected at 48, 96 and 168 h p.d. after exposure to GdCl3, and extracted using methanol/chloroform solvent system. H-1 NMR spectra of tissue extracts were analyzed by pattern recognition using principal components analysis. The liver damages caused by GdCl3 were characterized by increased succinate and decreased glycogen level and elevated lactate, alanine and betaine concentration in liver. Furthermore, the increase of creatine and lactate, and decrease of glutamate, alanine, phosphocholine, glycophosphocholine (GPC), betaine, myo-inositol and trimethylamine N-oxide (TMAO) levels in kidney illustrated kidney disturbance induced by GdCl3.

Collaboration


Dive into the Fengkui Pei's collaboration.

Top Co-Authors

Avatar

Xiaojing Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huifeng Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yijie Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weisheng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peiqiu Liao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhongfeng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Xue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianghua Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guoying Sun

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge