Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huifeng Wu is active.

Publication


Featured researches published by Huifeng Wu.


Metabolomics | 2007

Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics

Ching-Yu Lin; Huifeng Wu; Ronald S. Tjeerdema; Mark R. Viant

Metabolomic analysis of tissue samples can be applied across multiple fields including medicine, toxicology, and environmental sciences. A thorough evaluation of several metabolite extraction procedures from tissues is therefore warranted. This has been achieved at two research laboratories using muscle and liver tissues from fish. Multiple replicates of homogenous tissues were extracted using the following solvent systems of varying polarities: perchloric acid, acetonitrile/water, methanol/water, and methanol/chloroform/water. Extraction of metabolites from ground wet tissue, ground dry tissue, and homogenized wet tissue was also compared. The hydrophilic metabolites were analyzed using 1-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectroscopy and projections of 2-dimensional J-resolved (p-JRES) NMR, and the spectra evaluated using principal components analysis. Yield, reproducibility, ease, and speed were the criteria for assessing the quality of an extraction protocol for metabolomics. Both laboratories observed that the yields of low molecular weight metabolites were similar among the solvent extractions; however, acetonitrile-based extractions provided poorer fractionation and extracted lipids and macromolecules into the polar solvent. Extraction using perchloric acid produced the greatest variation between replicates due to peak shifts in the spectra, while acetonitrile-based extraction produced highest reproducibility. Spectra from extraction of ground wet tissues generated more macromolecules and lower reproducibility compared with other tissue disruption methods. The p-JRES NMR approach reduced peak congestion and yielded flatter baselines, and subsequently separated the metabolic fingerprints of different samples more clearly than by 1D NMR. Overall, single organic solvent extractions are quick and easy and produce reasonable results. However, considering both yield and reproducibility of the hydrophilic metabolites as well as recovery of the hydrophobic metabolites, we conclude that the methanol/chloroform/water extraction is the preferred method.


Toxicology and Applied Pharmacology | 2009

Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy

Lai Wei; Peiqiu Liao; Huifeng Wu; Xiaojing Li; Fengkui Pei; Weisheng Li; Yijie Wu

The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of (1)H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. (1)H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Krebs cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.


Environmental Science & Technology | 2010

Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a fish model.

Eduarda M. Santos; Jonathan S. Ball; Timothy Williams; Huifeng Wu; Fernando Ortega; Ronny van Aerle; Ioanna Katsiadaki; Francesco Falciani; Mark R. Viant; James K. Chipman; Charles R. Tyler

Copper (Cu) is a micronutrient essential for the biochemical functioning of numerous processes in vertebrates but is also often present in the aquatic environment at concentrations able to cause adverse health effects in aquatic organisms. This study investigated the signaling pathways mediating the effects of exposure to Cu using a toxicogenomic approach in a fish model, the stickleback ( Gasterosteus aculeatus ). Freshwater-acclimated male fish were exposed via the water to Cu, including at environmentally relevant concentrations (3.2-128 microg of Cu/L for 4 days), and the biological responses explored through analyses of the hepatic transcriptome and metabolome and phenotypic end points, including assessment of DNA damage in blood cells. The Cu exposures resulted in DNA strand breaks in blood cells at all exposure concentrations and alterations in hepatic gene expression and metabolite concentrations in a concentration-dependent manner (from 10 microg of Cu/L). Genes associated with the cholesterol biosynthesis pathway were significantly over-represented and consistently down-regulated (at 128 microg of Cu/L), similar to that occurring in a mouse model for Wilsons disease. Additionally, inductions in metallothionein and catalase were also observed. The concentrations of NAD(+) and lactate increased significantly with the Cu exposure, consistent with a shift toward anaerobic metabolism, and these aligned closely with changes observed in gene expression. The pathways of Cu toxicity identified in our study support the conserved mechanisms of Cu toxicity from lower vertebrates to mammals, provide novel insights into the deleterious effects of Cu in fish, and further demonstrate the utility of fish as environmental sentinels for chemical impacts on both environmental and human health.


Toxicology and Applied Pharmacology | 2008

Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

Lai Wei; Peiqiu Liao; Huifeng Wu; Xiaojing Li; Fengkui Pei; Weisheng Li; Yijie Wu

Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The 1H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Krebs cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-d-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.


Aquatic Toxicology | 2010

NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis.

Huifeng Wu; Wen-Xiong Wang

Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu+Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers.


Marine Environmental Research | 2011

Metabolic responses in gills of Manila clam Ruditapes philippinarum exposed to copper using NMR-based metabolomics

Linbao Zhang; Xiaoli Liu; Liping You; Di Zhou; Huifeng Wu; Lianzhen Li; Jianmin Zhao; Jianghua Feng; Junbao Yu

Copper is an important heavy metal contaminant with high ecological risk in the Bohai Sea. In this study, the metabolic responses in the bioindicator, Manila clam (Ruditapes philippinarum), to the environmentally relevant copper exposures were characterized using NMR-based metabolomics. The significant metabolic changes corresponding to copper exposures were related to osmolytes, intermediates of the Krebs cycle and amino acids, such as the increase in homarine, branched chain amino acids and decrease in succinate, alanine and dimethylamine in the copper-exposed clam gills during 96 h exposure period. Overall, Cu may lead to the disturbances in osmotic regulation and energy metabolism in clams during 96 h experimental period. These results demonstrate that NMR-based metabolomics is applicable for the discovery of metabolic biomarkers which could be used to elucidate the toxicological mechanisms of marine heavy metal contaminants.


Environmental Toxicology and Pharmacology | 2011

Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance ( 1 H NMR) based metabolomics

Linbao Zhang; Xiaoli Liu; Liping You; Di Zhou; Qing Wang; Fei Li; Ming Cong; Lianzhen Li; Jianmin Zhao; Dongyan Liu; Junbao Yu; Huifeng Wu

Benzo(a)pyrene is an important polycyclic aromatic hydrocarbon (PAH) which causes carcinogenic, teratogenic and mutagenic effects in various species and the level of contamination of this toxic agent in the marine environment is of great concern. In this study, metabolic responses induced by two doses (0.02 and 0.2μM) of BaP were characterized in the gill tissues of Manila clam Ruditapes philippinarum after exposure for 24, 48 and 96h. The high dose (0.2μM) of BaP induced the disturbances in energy metabolism and osmotic regulation based on the metabolic biomarkers such as succinate, alanine, glucose, glycogen, branched chain amino acids, betaine, taurine, homarine, and dimethylamine in clam gills after 24h of exposure. In addition, hormesis induced by BaP was found in clams exposed to both doses of BaP. Overall, our results demonstrated the applicability of metabolomics for the elucidation of toxicological effects of marine environmental contaminants in a selected bioindicator species such as the Manila clam.


Aquatic Toxicology | 2010

Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol

Ioanna Katsiadaki; Timothy Williams; Jonathan S. Ball; Tim P. Bean; Matthew B. Sanders; Huifeng Wu; Eduarda M. Santos; Margaret Brown; Paul Baker; Fernando Ortega; Francesco Falciani; John A. Craft; Charles R. Tyler; Mark R. Viant; James K. Chipman

An established three-spined stickleback (Gasterosteus aculeatus) cDNA array was expanded to 14,496 probes with the addition of hepatic clones derived from subtractive and normalized libraries from control males and males exposed to model toxicants. Microarrays and one-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy, together with individual protein and gene biomarkers were employed to investigate the hepatic responses of the stickleback to ethinyl-estradiol (EE(2)) exposure. Male fish were exposed via the water to EE(2), including environmentally relevant concentrations (0.1-100ng/l) for 4 days, and hepatic transcript and metabolite profiles, kidney spiggin protein and serum vitellogenin concentrations were determined in comparison to controls. EE(2) exposure did not significantly affect spiggin concentration but significantly induced serum vitellogenin protein at the threshold concentration of 32ng/l. (1)H NMR coupled with robust univariate testing revealed only limited changes, but these did support the predicted modulation of the amino acid profile by transcriptomics. Transcriptional induction was found for hepatic vitellogenins and choriogenins as expected, together with a range of other EE(2)-responsive genes. Choriogenins showed the more sensitive responses with statistically significant induction at 10ng/l. Real-time polymerase chain reaction (PCR) confirmed transcriptional induction of these genes. Phosvitinless vitellogenin C transcripts were highly expressed and represent a major form of the egg yolk precursors, and this is in contrast to other fish species where it is a minor component of vitellogenic transcripts. Differences in inducibility between the vitellogenins and choriogenins appear to be in accordance with the sequential formation of chorion and yolk during oogenesis in fish.


PLOS Computational Biology | 2011

Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach

Timothy Williams; Nil Turan; Amer M. Diab; Huifeng Wu; Carolynn Mackenzie; Katie L. Bartie; Olga Hrydziuszko; Brett P. Lyons; Grant D. Stentiford; John Herbert; Joseph K. Abraham; Ioanna Katsiadaki; Michael J. Leaver; John B. Taggart; Stephen G. George; Mark R. Viant; Kevin Chipman; Francesco Falciani

The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.


Aquatic Toxicology | 2013

Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47).

Chenglong Ji; Huifeng Wu; Lei Wei; Jianmin Zhao; Junbao Yu

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs) that are widely used in industrial products and have posed potential risk on the coastal environment of the Laizhou Bay in China. They are of great concern due to their toxicities, such as hepatotoxicity, carcinogenecity, neurotoxicity, immunotoxicity and endocrine disrupting effects in animals. In this work, we focused on the gender-specific responses of BDE 47 in mussel Mytilus galloprovincialis using a combined proteomic and metabolomic approach. Metabolic responses indicated that BDE 47 mainly caused disturbance in energy metabolism in male mussel gills. For female mussel samples, disruption in both osmotic regulation and energy metabolism was found in terms of differential metabolic profiles. Proteomic responses revealed that BDE 47 induced cell apoptosis and reduced reactive oxygen species (ROS) production in both male and female mussels, disturbance in protein homeostasis in male mussels as well as disturbance in female mussel proteolysis based on the differential proteomic biomarkers. Overall, these results confirmed the gender-specific responses in mussels to BDE 47 exposures. This work demonstrated that an integrated metabolomic and proteomic approach could provide an important insight into the toxicological effects of environmental pollutant to organisms.

Collaboration


Dive into the Huifeng Wu's collaboration.

Top Co-Authors

Avatar

Jianmin Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chenglong Ji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junbao Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Linbao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ming Cong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liping You

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lianzhen Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge