Fengli Yan
Hebei Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fengli Yan.
Journal of Physics A | 2005
Ting Gao; Fengli Yan; Zhi-Xi Wang
We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series of local operations on their respective particles according to the tripartite stipulation and the secret message they both want to send to Charlie. By three of Alice, Bob and Charlies Bell measurement results, Charlie is able to infer the secret messages directly. The secret messages are faithfully transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ states without revealing any information to a potential eavesdropper. Since there is no transmission of the qubits carrying the secret message between any two of them in the public channel, it is completely secure for direct secret communication if a perfect quantum channel is used.
Science China-physics Mechanics & Astronomy | 2009
Ting Gao; Fengli Yan; You-Cheng Li
A quantum secret sharing scheme between an m-party group and an n-party group is proposed using three conjugate bases. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all m members in group 1 chooses randomly his/her own secret key individually and independently, and directly encodes his/her respective secret information on the states of single photons via unitary operations, then the last one sends 1/n of the resulting qubits to each member of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. It renders impossible a Trojan horse attack with a multi-photon signal, a fake-signal attack with EPR pairs, an attack with single photons, and an attack with invisible photons. We give the upper bounds on the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states.
Journal of The Optical Society of America B-optical Physics | 2013
Dong Ding; Fengli Yan; Ting Gao
Multipartite concatenated Greenberger–Horne–Zeilinger (C-GHZ) states, a class of multipartite entangled states, have superior stability under the influence of decoherence. We propose two means of constructing multiphoton C-GHZ states based on entanglers of multiphoton GHZ states that are both experimentally realizable and scalable. Given a km-photon GHZ state as an input state, if m is odd, one can create a km-photon C-GHZ state. In addition, we have designed a scheme to prepare km-photon C-GHZ states from km single-photon states by using k entanglers of m-photon GHZ states and km-control Toffoli gates.
Chinese Physics Letters | 2004
Ting Gao; Fengli Yan; Zhi-Xi Wang
A simplification scheme of probabilistic teleportation of two-particle state in a general form is given. By means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement and classically controlled operations, we construct an efficient quantum logical network for implementing the new scheme of probabilistic teleportation of a two-particle state in a general form.
Optics Express | 2015
Yingqiu He; Dong Ding; Fengli Yan; Ting Gao
A method for exploring photon-number entangled states with weak nonlinearities is described. We show that it is possible to create and detect such entanglement at various scales, ranging from microscopic to macroscopic systems. In the present architecture, we suggest that the maximal phase shift induced in the process of interaction between photons is proportional to photon numbers. Also, in the absence of decoherence we analyze maximum error probability and show its feasibility with current technology.
Journal of Physics A | 2017
Xianfei Qi; Ting Gao; Fengli Yan
Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.
Physics Letters A | 2006
Mei-Yu Wang; Fengli Yan
We investigate the lower bound of the amount of entanglement for faithfully teleporting a quantum state belonging to a subset of the whole Hilbert space. Moreover, when the quantum state belongs to a set composed of two states, a probabilistic teleportation scheme is presented using a non-maximally entangled state as the quantum channel.
Scientific Reports | 2015
Lu Liu; Ting Gao; Fengli Yan
Mutually unbiased measurements (MUMs) are generalized from the concept of mutually unbiased bases (MUBs) and include the complete set of MUBs as a special case, but they are superior to MUBs as they do not need to be rank one projectors. We investigate entanglement detection using sets of MUMs and derive separability criteria for multipartite qudit systems, arbitrary high-dimensional bipartite systems of a d1-dimensional subsystem and a d2-dimensional subsystem, and multipartite systems of multi-level subsystems. These criteria are of the advantages of more effective and wider application range than previous criteria. They provide experimental implementation in detecting entanglement of unknown quantum states.
Journal of Physics B | 2015
Yingqiu He; Dong Ding; Fengli Yan; Ting Gao
We present an efficient scheme for the preparing and purifying of the four-photon Greenberger–Horne–Zeilinger (GHZ) state based on linear optics and postselection. First, we describe how to create a four-photon GHZ state in both polarization and spatial degrees of freedom from two pairs. Moreover, in the presence of depolarization noise our scheme is capable of purifying the desired state. In the regime of weak nonlinearity we design an indirect photon number-resolving detection to distinguish two states of the two pairs. At last, a fourfold coincidence detector click indicates the creation of a polarization-entangled four-photon GHZ state.
Physics Letters A | 2013
Dong Ding; Fengli Yan
Abstract We propose an efficient scheme for the generation of three-photon Greenberger–Horne–Zeilinger (GHZ) state with linear optics, nonlinear optics and postselection. Several devices are designed and a two-mode quantum nondemolition detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.