Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengqiao Li is active.

Publication


Featured researches published by Fengqiao Li.


Journal of Pharmacology and Experimental Therapeutics | 2006

Apolipoprotein E-Derived Peptides Ameliorate Clinical Disability and Inflammatory Infiltrates into the Spinal Cord in a Murine Model of Multiple Sclerosis

Fengqiao Li; Gregory D. Sempowski; Suzanne E. McKenna; Daniel T. Laskowitz; Carol A. Colton; Michael P. Vitek

Apolipoprotein E (apoE), well known to play a role in lipid transport and cholesterol metabolism, also exerts anti-inflammatory and neuroprotective effects in the central nervous system. Recent clinical and genetic studies display an association between apoE genotype (APOE) and the progression and severity of multiple sclerosis, raising the possibility that modulation of apoE may be a novel treatment for multiple sclerosis. Using a murine experimental autoimmune encephalomyelitis (EAE) model of human multiple sclerosis, we found that a peptidomimetic of apoE protein, COG133, substantially reduces the clinical symptoms of EAE and promotes remission from the disability when administered before or after onset of disease. Most notably, fusion of COG133 to a protein transduction domain creates COG112, a modified apoE-mimetic peptide with significantly enhanced anti-inflammatory bioactivities in vitro, and improved therapeutic effects on EAE in vivo, which renders a nearly full remission from the disability. Histopathological analysis showed that COG112 and COG133 attenuated demyelination and significantly diminished the number of peripheral cells infiltrating into the spinal cord. ApoE mimetics also interfered with several mechanisms relevant to the pathogenesis of EAE and multiple sclerosis, including activation of macrophages, subsequent production of nitric oxide and inflammatory cytokines, and lymphocyte proliferation. These data suggest that apoE mimetics represent a multidimensional therapeutic for multiple sclerosis capable of inhibiting the inflammatory cascade, modulating immune cell function, and reducing clinical signs, which may have novel utility for the treatment of inflammatory autoimmune diseases.


Journal of Immunology | 2011

Apolipoprotein E and Peptide Mimetics Modulate Inflammation by Binding the SET Protein and Activating Protein Phosphatase 2A

Dale J. Christensen; Nobutaka Ohkubo; Jessica Oddo; Michael J. Van Kanegan; Jessica Neil; Fengqiao Li; Carol A. Colton; Michael P. Vitek

The molecular mechanism by which apolipoprotein E (apoE) suppresses inflammatory cytokine and NO production is unknown. Using an affinity purification approach, we found that peptide mimetics of apoE, derived from its receptor binding domain residues 130–150, bound to the SET protein, which is a potent physiological inhibitor of protein phosphatase 2A (PP2A). Both holo-apoE protein and apoE-mimetic peptides bound to the C-terminal region of SET, which is then associated with an increase in PP2A-mediated phosphatase activity. As physiological substrates for PP2A, the LPS-induced phosphorylation status of signaling MAPK and Akt kinase is reduced following treatment with apoE-mimetic peptides. On the basis of our previous report, in which apoE-mimetic peptides reduced I-κB kinase and NF-κB activation, we also demonstrate a mechanism for reduced production of inducible NO synthase protein and its NO product. These data provide evidence for a novel molecular mechanism by which apoE and apoE-mimetic peptides antagonize SET, thereby enhancing endogenous PP2A phosphatase activity, which reduces levels of phosphorylated kinases, signaling, and inflammatory response.


Journal of Pharmacology and Experimental Therapeutics | 2010

An Apolipoprotein E-Mimetic Stimulates Axonal Regeneration and Remyelination after Peripheral Nerve Injury

Fengqiao Li; Kenneth A. Fowler; Jessica Neil; Carol A. Colton; Michael P. Vitek

Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury.


Neurodegenerative Diseases | 2012

APOE-Mimetic Peptides Reduce Behavioral Deficits, Plaques and Tangles in Alzheimer's Disease Transgenics

Michael P. Vitek; Dale J. Christensen; Donna M. Wilcock; Judianne Davis; W E Van Nostrand; Fengqiao Li; Carol A. Colton

Background: After age, the second largest risk factor for Alzheimer’s disease (AD) is apolipoprotein E (APOE) genotype, where APOE4 is associated with lower apoE protein levels, more severer brain pathology, enhanced inflammation and disease. Small peptides corresponding to the receptor-binding region of apoE mimic the anti-inflammatory activity of the apoE holoprotein. These apoE mimetics greatly improve behavioral outcomes and neuronal survival in head trauma models that display AD pathology and neuronal loss. Objective: To determine whether apoE mimetics change behavior, inflammation and pathology in CVND-AD (SwDI-APP/NOS2–/–) transgenic mice. Methods: Starting at 9 months, apoE peptides were subcutaneously administered 3 times per week for 3 months followed by behavioral, histochemical and biochemical testing. Results: Treatment with apoE mimetics significantly improved behavior while decreasing the inflammatory cytokine IL-6, neurofibrillary tangle-like and amyloid plaque-like structures. Biochemical measures matched the visible pathological results. Conclusions: Treatment with apoE mimetics significantly improved behavior, reduced inflammation and reduced pathology in CVND-AD mice. These improvements are associated with apoE-mimetic-mediated increases in protein phosphatase 2A activity. Testing in additional AD models showed similar benefits, reinforcing this novel mechanism of action of apoE mimetics. These data suggest that the combination of anti-inflammatory and neuroprotective activities of apoE mimetics represents a new generation of potential therapeutics for AD.


Journal of Neurotrauma | 2016

Apolipoprotein E-Mimetic COG1410 Reduces Acute Vasogenic Edema following Traumatic Brain Injury

Fang Cao; Yong Jiang; Yue Wu; Jianjun Zhong; Jieshi Liu; Xinghu Qin; Ligang Chen; Michael P. Vitek; Fengqiao Li; Lu Xu; Xiaochuan Sun

The degree of post-traumatic brain edema and dysfunction of the blood-brain barrier (BBB) influences the neurofunctional outcome after a traumatic brain injury (TBI). Previous studies have demonstrated that the administration of apolipoprotein E-mimetic peptide COG1410 reduces the brain water content after subarachnoid hemorrhage, intra-cerebral hemorrhage, and focal brain ischemia. However, the effects of COG1410 on vasogenic edema following TBI are not known. The current study evaluated the effects of 1 mg/kg daily COG1410 versus saline administered intravenously after a controlled cortical impact (CCI) injury on BBB dysfunction and vasogenic edema at an acute stage in mice. The results demonstrated that treatment with COG1410 suppressed the activity of matrix metalloproteinase-9, reduced the disruption of the BBB and Evans Blue dye extravasation, reduced the TBI lesion volume and vasogenic edema, and decreased the functional deficits compared with mice treated with vehicle, at an acute stage after CCI. These findings suggest that COG1410 is a promising preclinical therapeutic agent for the treatment of traumatic brain injury.


Neuroscience Letters | 2016

An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage

Yue Wu; Jinwei Pang; Jianhua Peng; Fang Cao; Michael P. Vitek; Fengqiao Li; Yong Jiang; Xiaochuan Sun

This study investigated the neuroprotective effects of COG1410, an apoliporotein E (apoE)-derived mimic peptide, against early brain injury (EBI) after subarachnoid hemorrhage (SAH). SAH was induced in C57BL/6J mice (n=68) by endovascular perforation. Mice received intravenous injection of COG1410 (2mg/kg) or equal volume of vehicle (saline). The mortality rate, neurological score, rotarod latencies, cell apoptosis, microglial activation, pro-inflammatory cytokines production and protein levels of apoptotic and inflammatory markers were assessed at 24h after sham operation or SAH. Results showed that COG1410 alleviated the neurological deficits associated with SAH. Compared with vehicle treatment group, the number of apoptotic cells and activated microglia decreased significantly in the COG1410 treated group. COG1410 enhanced Akt activation and suppressed caspase-3 cleavage. The imbalance of Bax and Bcl-2 induced by SAH was regulated by COG1410. Additionally, COG1410 attenuated cytokines production of IL-1β, IL-6 and TNF-α and suppressed the activation of JNK/c-Jun and NF-κB. Taken together, COG1410 protected against EBI via reducing apoptosis and neuroinflammation, through mechanisms that involve the regulation of apoptotic signaling and microglial activation. COG1410 is a potential neuroprotective agent for SAH treatment.


Journal of Neuroscience Research | 2014

ApoE mimetic ameliorates motor deficit and tissue damage in rat spinal cord injury

Ruihua Wang; Jun Hong; Miaomiao Lu; Jessica Neil; Michael P. Vitek; Xiaozhi Liu; David S. Warner; Fengqiao Li; Huaxin Sheng

Apolipoprotein E (apoE), a plasma protein responsible for transporting lipid and cholesterol, modulates responses of the central nervous system to injury. Small peptides derived from the receptor‐binding region of apoE can simulate some important bioactivities of apoE holoprotein and offer neuroprotection against brain injury. We tested whether COG1410, an apoE‐mimetic peptide, provides protection in a rat model of spinal cord injury (SCI). Traumatic injury was created at T8 by a cortical impact device. Injured rats were randomized to four treatment groups: vehicle, 0.15, 0.3, or 0.6 mg/kg COG1410; sham surgery rats received vehicle. Basso, Beattie, Bresnahan neurological score was evaluated prior to injury and at 1, 3, 7, and 14 days after injury. Histological changes were evaluated at 14 days. All injured rats lost body weight during the first week following injury. Body weight recovery was significantly improved in rats treated with COG1410. Mechanical impact resulted in severe motor deficit, and most animals had a BBB score of 0–1 at 24 hours postinjury. COG1410‐treated rats showed significantly improved functional recovery and ameliorated motor deficit at 14 days postinjury. Histological analysis showed that COG1410 groups had a significantly reduced lesion size at the site of injury, a larger preserved luxol fast blue‐stained area, and more visible neurons in the surrounding area of injury. Microglial activation was also significantly suppressed. These findings indicate that this apoE mimetic effectively improved neurological and histological outcome following SCI in rats, and the effect was associated with inhibition of microglial activation.


Journal of Neurotrauma | 2017

Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood–Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study

Xinghu Qin; Hong You; Fang Cao; Yue Wu; Jianhua Peng; Jinwei Pang; Hong Xu; Yue Chen; Ligang Chen; Michael P. Vitek; Fengqiao Li; Xiaochuan Sun; Yong Jiang

Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.


Journal of Neurology and Neurophysiology | 2013

Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice

Zhen Gu; Fengqiao Li; Yi Ping Zhang; Lisa B.E. Shields; Xiaoling Hu; Yiyan Zheng; Panpan Yu; Yongjie Zhang; Jun Cai; Michael P. Vitek; Christopher B. Shields

Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. Methods A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. Results The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. Conclusion The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.


Key Engineering Materials | 2005

Geometry Sensitivity Analyses of Microstructures of IC Packages on Passivation Cracking

Yu Ting He; Fengqiao Li; Rong Shi; G.Q. Zhang; L.J. Ernst; Jack Zhang; Zhi Tang Song

Passivation crack is one of the main failures of micro-electronics. And the IC interconnect has a large varying range values comparing with its geometry size. In this paper, the influence of geometry values of micro-structures of IC packages on passivation cracking is studied by maximum principal stress theory using a certain 2D FEM model with different design geometry parameters, pitch of lines, width of line, thickness of epoxy, thickness of dielectric layer and the Aluminum yielding stress (following as “d”, “w”, “t_epo”, “t_Teos” and “sy_al” respectively). For different critical process step, here the final process temperature is acted as a representative parameter to analyze its impact. Furthermore, Response Surface Model (RSM) of principal stress is established using any two design parameters. Results show that width of line, thickness of dielectric layer and the Aluminium yielding stress will have great influence on passivation cracking while other parameters having little impact.

Collaboration


Dive into the Fengqiao Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaochuan Sun

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yue Wu

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Cao

Zunyi Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge