Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Vitek is active.

Publication


Featured researches published by Michael P. Vitek.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Tau is essential to β-amyloid-induced neurotoxicity

Mark Rapoport; Hana N. Dawson; Lester I. Binder; Michael P. Vitek; Adriana Ferreira

Senile plaques and neurofibrillary tangles, the two hallmark lesions of Alzheimers disease, are the results of the pathological deposition of proteins normally present throughout the brain. Senile plaques are extracellular deposits of fibrillar β-amyloid peptide (Aβ); neurofibrillary tangles represent intracellular bundles of self-assembled hyperphosphorylated tau proteins. Although these two lesions are often present in the same brain areas, a mechanistic link between them has yet to be established. In the present study, we analyzed whether tau plays a key role in fibrillar Aβ-induced neurite degeneration in central neurons. Cultured hippocampal neurons obtained from wild-type, tau knockout, and human tau transgenic mice were treated with fibrillar Aβ. Morphological analysis indicated that neurons expressing either mouse or human tau proteins degenerated in the presence of Aβ. On the other hand, tau-depleted neurons showed no signs of degeneration in the presence of Aβ. These results provide direct evidence supporting a key role for tau in the mechanisms leading to Aβ-induced neurodegeneration in the central nervous system. In addition, the analysis of the composition of the cytoskeleton of tau-depleted neurons suggested that the formation of more dynamic microtubules might confer resistance to Aβ-mediated neurodegeneration.


Journal of Clinical Investigation | 2004

Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology

Robert A. Rissman; Wayne W. Poon; Mathew Blurton-Jones; Salvatore Oddo; Reidun Torp; Michael P. Vitek; Frank M. LaFerla; Troy T. Rohn; Carl W. Cotman

Neurofibrillary tangles (NFTs) are composed of abnormal aggregates of the cytoskeletal protein tau. Together with amyloid beta (Abeta) plaques and neuronal and synaptic loss, NFTs constitute the primary pathological hallmarks of Alzheimer disease (AD). Recent evidence also suggests that caspases are activated early in the progression of AD and may play a role in neuronal loss and NFT pathology. Here we demonstrate that tau is cleaved at D421 (DeltaTau) by executioner caspases. Following caspase-cleavage, DeltaTau facilitates nucleation-dependent filament formation and readily adopts a conformational change recognized by the early pathological tau marker MC1. DeltaTau can be phosphorylated by glycogen synthase kinase-3beta and subsequently recognized by the NFT antibody PHF-1. In transgenic mice and AD brains, DeltaTau associates with both early and late markers of NFTs and is correlated with cognitive decline. Additionally, DeltaTau colocalizes with Abeta(1-42) and is induced by Abeta(1-42) in vitro. Collectively, our data imply that Abeta accumulation triggers caspase activation, leading to caspase-cleavage of tau, and that this is an early event that may precede hyperphosphorylation in the evolution of AD tangle pathology. These results suggest that therapeutics aimed at inhibiting tau caspase-cleavage may prove beneficial not only in preventing NFT formation, but also in slowing cognitive decline.


Journal of Leukocyte Biology | 2011

Nitric oxide and redox mechanisms in the immune response

David A. Wink; Harry B. Hines; Robert Y.S. Cheng; Christopher H. Switzer; Wilmarie Flores-Santana; Michael P. Vitek; Lisa A. Ridnour; Carol A. Colton

The role of redox molecules, such as NO and ROS, as key mediators of immunity has recently garnered renewed interest and appreciation. To regulate immune responses, these species trigger the eradication of pathogens on the one hand and modulate immunosuppression during tissue‐restoration and wound‐healing processes on the other. In the acidic environment of the phagosome, a variety of RNS and ROS is produced, thereby providing a cauldron of redox chemistry, which is the first line in fighting infection. Interestingly, fluctuations in the levels of these same reactive intermediates orchestrate other phases of the immune response. NO activates specific signal transduction pathways in tumor cells, endothelial cells, and monocytes in a concentration‐dependent manner. As ROS can react directly with NO‐forming RNS, NO bioavailability and therefore, NO response(s) are changed. The NO/ROS balance is also important during Th1 to Th2 transition. In this review, we discuss the chemistry of NO and ROS in the context of antipathogen activity and immune regulation and also discuss similarities and differences between murine and human production of these intermediates.


Neurobiology of Aging | 2007

Microvascular injury and blood–brain barrier leakage in Alzheimer's disease

B.D. Zipser; Conrad E. Johanson; Liliana Gonzalez; Tyler M. Berzin; Rosemarie Tavares; Christine M. Hulette; Michael P. Vitek; Virginia Hovanesian; Edward G. Stopa

Thinning and discontinuities within the vascular basement membrane (VBM) are associated with leakage of the plasma protein prothrombin across the blood-brain barrier (BBB) in Alzheimers disease (AD). Prothrombin immunohistochemistry and ELISA assays were performed on prefrontal cortex. In severe AD, prothrombin was localized within the wall and neuropil surrounding microvessels. Factor VIII staining in severe AD patients indicated that prothrombin leakage was associated with shrinkage of endothelial cells. ELISA revealed elevated prothrombin levels in prefrontal cortex AD cases that increased with the Braak stage (Control=1.39, I-II=1.76, III-IV=2.28, and V-VI=3.11 ng prothrombin/mg total protein). Comparing these four groups, there was a significant difference between control and Braak V-VI (p=0.0095) and also between Braak stages I-II and V-VI (p=0.0048). There was no significant difference in mean prothrombin levels when cases with versus without cerebral amyloid angiopathy (CAA) were compared (p-value=0.3627). When comparing AD patients by APOE genotype (ApoE3,3=2.00, ApoE3,4=2.49, and ApoE4,4=2.96 ng prothrombin/mg total protein) an analysis of variance indicated a difference between genotypes at the 10% significance level (p=0.0705). Tukeys test indicated a difference between the 3,3 and 4,4 groups (p=0.0607). These studies provide evidence that in advanced AD (Braak stage V-VI), plasma proteins like prothrombin can be found within the microvessel wall and surrounding neuropil, and that leakage of the blood-brain barrier may be more common in patients with at least one APOE4 allele.


The FASEB Journal | 2001

Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades

Hideo Matsuzaki; Michio Tamatani; Atsushi Yamaguchi; Kazuhiko Namikawa; Hiroshi Kiyama; Michael P. Vitek; Noriaki Mitsuda; Masaya Tohyama

Vascular endothelial growth factor (VEGF) is known as a selective endothelial cell mitogen that promotes angiogenesis and increases blood vessel formation in vivo. Here we report that VEGF has protective effects on primary hippocampal neurons against glutamate toxicity by acting on phosphatidylinositol 3‐kinase (PI3‐K)/Akt pathways and mitogen‐activated protein kinase kinase (MEK)/extracellular signal‐regulated kinase (ERK) pathways, operating independently of one another. Decrease in the VEGFs neuroprotective effect resulting from inhibition of either pathway alone was significantly enhanced by simultaneous inhibition of both pathways. However, adenovirus‐mediated expression of either the active form of Akt or of MEK significantly inhibited glutamate‐induced neuronal death. Treatment with antisense ODN against Flk‐1, but not against Flt‐1, blocked the effect of VEGF on the activation of Akt and ERK and glutamate‐induced neuronal death. These findings suggest that VEGF has a protective effect on hippocampal neurons against glutamate‐induced toxicity and that this effect is dependent on PI3‐ K/Akt and MEK/ERK signaling pathways mediated primarily through Flk‐1 receptor.


Antioxidants & Redox Signaling | 2001

Mechanisms of the antioxidant effects of nitric oxide

David A. Wink; Katrina M. Miranda; Michael Graham Espey; Ryzard M. Pluta; Sandra J. Hewett; Carol A. Colton; Michael P. Vitek; Martin Feelisch; Mathew B. Grisham

The Janus face of nitric oxide (NO) has prompted a debate as to whether NO plays a deleterious or protective role in tissue injury. There are a number of reactive nitrogen oxide species, such as N2O3 and ONOO-, that can alter critical cellular components under high local concentrations of NO. However, NO can also abate the oxidation chemistry mediated by reactive oxygen species such as H2O2 and O2- that occurs at physiological levels of NO. In addition to the antioxidant chemistry, NO protects against cell death mediated by H2O2, alkylhydroperoxides, and xanthine oxidase. The attenuation of metal/peroxide oxidative chemistry, as well as lipid peroxidation, appears to be the major chemical mechanisms by which NO may limit oxidative injury to mammalian cells. In addition to these chemical and biochemical properties, NO can modulate cellular and physiological processes to limit oxidative injury, limiting processes such as leukocyte adhesion. This review will address these aspects of the chemical biology of this multifaceted free radical and explore the beneficial effect of NO against oxidative stress.


Journal of Biological Chemistry | 2001

Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53.

Atsushi Yamaguchi; Michio Tamatani; Hideo Matsuzaki; Kazuhiko Namikawa; Hiroshi Kiyama; Michael P. Vitek; Noriaki Mitsuda; Masaya Tohyama

Survival factors suppress apoptosis by activating the serine/threonine kinase Akt. To investigate the molecular mechanism underlying activated Akts ability to protect neurons from hypoxia or nitric oxide (NO) toxicity, we focused on the apoptosis-related functions of p53 and caspases. We eliminated p53 by employing p53-deficient neurons and increased p53 by infection with recombinant adenovirus capable of transducing p53 expression, and we now show that p53 is implicated in the apoptosis induced by hypoxia or NO treatments of primary cultured hippocampal neurons. Although hypoxia and NO induced p53, treatment with insulin-like growth factor-1 significantly inhibited caspase-3-like activation, neuronal death and transcriptional activity of p53. These insulin-like growth factor-1 effects are prevented by wortmannin, a phosphatidylinositol 3-kinase inhibitor. Adenovirus-mediated expression of activated-Akt kinase suppressed p53-dependent transcriptional activation of responsive genes such as Bax, suppressed caspase-3-like protease activity and suppressed neuronal cell death with no effect on the cellular accumulation and nuclear translocation of p53. In contrast, overexpression of kinase-defective Akt failed to suppress these same activities. These results suggest a mechanism where Akt kinase activation reduces p53s transcriptional activity that ultimately rescues neurons from hypoxia- or NO-mediated cell death.


The Journal of Neuroscience | 2011

Tau protein is required for amyloid {beta}-induced impairment of hippocampal long-term potentiation.

Olivia A. Shipton; Julie R. Leitz; Jenny Dworzak; Christine E. J. Acton; E M Tunbridge; Franziska Denk; Hana N. Dawson; Michael P. Vitek; Richard Wade-Martins; Ole Paulsen; Mariana Vargas-Caballero

Amyloid β (Aβ) and tau protein are both implicated in memory impairment, mild cognitive impairment (MCI), and early Alzheimers disease (AD), but whether and how they interact is unknown. Consequently, we asked whether tau protein is required for the robust phenomenon of Aβ-induced impairment of hippocampal long-term potentiation (LTP), a widely accepted cellular model of memory. We used wild-type mice and mice with a genetic knock-out of tau protein and recorded field potentials in an acute slice preparation. We demonstrate that the absence of tau protein prevents Aβ-induced impairment of LTP. Moreover, we show that Aβ increases tau phosphorylation and that a specific inhibitor of the tau kinase glycogen synthase kinase 3 blocks the increased tau phosphorylation induced by Aβ and prevents Aβ-induced impairment of LTP in wild-type mice. Together, these findings show that tau protein is required for Aβ to impair synaptic plasticity in the hippocampus and suggest that the Aβ-induced impairment of LTP is mediated by tau phosphorylation. We conclude that preventing the interaction between Aβ and tau could be a promising strategy for treating cognitive impairment in MCI and early AD.


Free Radical Biology and Medicine | 2001

Active glycation in neurofibrillary pathology of Alzheimer disease: Nε-(Carboxymethyl) lysine and hexitol-lysine

Rudy J. Castellani; Peggy L.R. Harris; Lawrence M. Sayre; Junichi Fujii; Naoyuki Taniguchi; Michael P. Vitek; Hank Founds; Craig S. Atwood; George Perry; Mark A. Smith

Abstract Advanced glycation end products are a diverse class of posttranslational modifications, stemming from reactive aldehyde reactions, that have been implicated in the pathogenesis of a number of degenerative diseases. Because advanced glycation end products are accelerated by, and result in formation of, oxygen-derived free radicals, they represent an important component of the oxidative stress hypothesis of Alzheimer disease (AD). In this study, we used in situ techniques to assess N e -(Carboxymethyl)lysine (CML), the predominant advanced glycation end product that accumulates in vivo, along with its glycation-specific precursor hexitol-lysine, in patients with AD as well as in young and aged-matched control cases. Both CML and hexitol-lysine were increased in neurons, especially those containing intracellular neurofibrillary pathology in cases of AD. The increase in hexitol-lysine and CML in AD suggests that glycation is an early event in disease pathogenesis. In addition, because CML can result from either lipid peroxidation or advanced glycation, while hexitol-lysine is solely a product of glycation, this study, together with studies demonstrating the presence of 4-hydroxy-2-nonenal adducts and pentosidine, provides evidence of two distinct oxidative processes acting in concert in AD neuropathology. Our findings support the notion that aldehyde-mediated modifications, together with oxyradical-mediated modifications, are critical pathogenic factors in AD.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction.

Douglas D. Thomas; Michael Graham Espey; Michael P. Vitek; Katrina M. Miranda; David A. Wink

The chemical origins of nitrated tyrosine residues (NT) formed in proteins during a variety of pathophysiological conditions remain controversial. Although numerous studies have concluded that NT is a signature for peroxynitrite (ONOO−) formation, other works suggest the primary involvement of peroxidases. Because metal homeostasis is often disrupted in conditions bearing NT, the role of metals as catalysts for protein nitration was examined. Cogeneration of nitric oxide (NO) and superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}), from spermine/NO (2.7 μM/min) and xanthine oxidase (1–28 μM O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}/min), respectively, resulted in protein nitration only when these species were produced at approximately equivalent rates. Addition of ferriprotoporphyrin IX (hemin) to this system increased nitration over a broad range of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} concentrations with respect to NO. Nitration in the presence of superoxide dismutase but not catalase suggested that ONOO− might not be obligatory to this process. Hemin-mediated NT formation required only the presence of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} and H2O2, which are stable end-products of NO and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} degradation. Ferrous, ferric, and cupric ions were also effective catalysts, indicating that nitration is mediated by species capable of Fenton-type chemistry. Although ONOO− can nitrate proteins, there are severe spatial and temporal constraints on this reaction. In contrast, accumulation of metals and NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} subsequent to NO synthase activity can result in far less discriminate nitration in the presence of an H2O2 source. Metal catalyzed nitration may account for the observed specificity of protein nitration seen under pathological conditions, suggesting a major role for translocated metals and the labilization of heme in NT formation.

Collaboration


Dive into the Michael P. Vitek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Wink

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengqiao Li

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. L. Schwarzman

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge