Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fengrui Hu is active.

Publication


Featured researches published by Fengrui Hu.


ACS Nano | 2015

Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters.

Fengrui Hu; Huichao Zhang; Chun Sun; Chunyang Yin; Bihu Lv; Chunfeng Zhang; William W. Yu; Xiaoyong Wang; Yu Zhang; Min Xiao

The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ~20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes and photodetectors, it is natural to anticipate what further excitements these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly two orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above findings have not only added a novel member to the perovskite family for the integration into current optoelectronic architectures, but also paved the way towards quantum-light applications of single perovskite NCs in various quantum information processing schemes.The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ∼20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes, and photodetectors, it is natural to anticipate what further excitement these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly 2 orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above superior optical properties have paved the way toward quantum-light applications of perovskite NCs in various quantum information processing schemes.


Physical Review Letters | 2016

Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

Yuhan Zhang; Jingsi Qiao; Si Gao; Fengrui Hu; Daowei He; Bing Wu; Ziyi Yang; B. Xu; Yun Li; Yi Shi; Wei Ji; Peng Wang; Xiaoyong Wang; Min Xiao; Hangxun Xu; Jianbin Xu; Xinran Wang

One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.


Nano Letters | 2016

Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion

Fengrui Hu; Chunyang Yin; Huichao Zhang; Chun Sun; William W. Yu; Chunfeng Zhang; Xiaoyong Wang; Yu Zhang; Min Xiao

Over the last two decades, intensive research efforts have been devoted to the suppressions of photoluminescence (PL) blinking and Auger recombination in metal-chalcogenide nanocrystals (NCs), with significant progresses being made only very recently in few specific NC structures. Here we show that nonblinking PL is readily available in the newly synthesized perovskite CsPbI3 NCs and that their Auger recombination of charged excitons is greatly slowed down, as signified by a PL lifetime about twice shorter than that of neutral excitons. Moreover, spectral diffusion is completely absent in single CsPbI3 NCs at the cryogenic temperature, leading to a resolution-limited PL line width of ∼200 μeV.


Physical Review Letters | 2017

Bright-Exciton Fine-Structure Splittings in Single Perovskite Nanocrystals

Chunyang Yin; Liyang Chen; Nan Song; Yan Lv; Fengrui Hu; Chun Sun; William W. Yu; Chunfeng Zhang; Xiaoyong Wang; Yu Zhang; Min Xiao

Here we show that, in single perovskite CsPbI_{3} nanocrystals synthesized from a colloidal approach, a bright-exciton fine-structure splitting as large as hundreds of μeV can be resolved with two orthogonally and linearly polarized photoluminescence peaks. This doublet could switch to a single peak when a single CsPbI_{3} nanocrystal is photocharged to eliminate the electron-hole exchange interaction. The above findings have prepared an efficient platform suitable for probing exciton and spin dynamics of semiconductor nanostructures at the visible-wavelength range, from which a variety of practical applications such as in entangled photon-pair source and quantum information processing can be envisioned.


Nanotechnology | 2016

Great enhancement in the excitonic recombination and light extraction of highly ordered InGaN/GaN elliptic nanorod arrays on a wafer scale.

Zhe Zhuang; Xu Guo; Bin Liu; Fengrui Hu; Jiangping Dai; Yun Zhang; Yi Li; Tao Tao; Ting Zhi; Zili Xie; Haixiong Ge; Xiaoyong Wang; Min Xiao; T. Wang; Yi Shi; Youdou Zheng; Rong Zhang

A series of highly ordered c-plane InGaN/GaN elliptic nanorod (NR) arrays were fabricated by our developed soft UV-curing nanoimprint lithography on a wafer. The photoluminescence (PL) integral intensities of NR samples show a remarkable enhancement by a factor of up to two orders of magnitude compared with their corresponding as-grown samples at room temperature. The radiative recombination in NR samples is found to be greatly enhanced due to not only the suppressed non-radiative recombination but also the strain relaxation and optical waveguide effects. It is demonstrated that elliptic NR arrays improve the light extraction greatly and have polarized emission, both of which possibly result from the broken structure symmetry. Green NR light-emitting diodes have been finally realized, with good current-voltage performance and uniform luminescence.


AIP Advances | 2014

Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS2

Xiaoxu Wei; Zhihao Yu; Fengrui Hu; Ying Cheng; Linwei Yu; Xiaoyong Wang; Min Xiao; Junzhuan Wang; Xinran Wang; Yi Shi

In this work, we report a strong photoluminescence (PL) enhancement of monolayer MoS2 under different treatments. We find that by simple ambient annealing treatment in the range of 200 °C to 400 °C, the PL emission can be greatly enhanced by a factor up to two orders of magnitude. This enhancement can be attributed to two factors: first, the formation of Mo-O bonds during ambient exposure introduces an effective p-doping in the MoS2 layer; second, localized electrons formed around Mo-O bonds related defective sites where the electrons can be effectively localized with higher binding energy resulting in efficient radiative excitons recombination. Time resolved PL decay measurement showed that longer lifetime of the treated sample consistent with the higher quantum efficiency in PL. These results give more insights to understand the luminescence properties of the MoS2.


Physical Review Letters | 2016

Carrier Multiplication in a Single Semiconductor Nanocrystal.

Fengrui Hu; Bihu Lv; Chunyang Yin; Chunfeng Zhang; Xiaoyong Wang; Brahim Lounis; Min Xiao

The UV-excited photoluminescence was measured for single CdSe nanocrystals and an average carrier multiplication efficiency of ~13.1% was obtained when the excitation photon energy was set at ~2.46 times of the nanocrystal energy gap.


Nano Research | 2017

Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors

Yuhan Zhang; Zhongzhong Luo; Fengrui Hu; Haiyan Nan; Xiaoyong Wang; Zhenhua Ni; Jianbin Xu; Yi Shi; Xinran Wang

Van der Waals (vdW) heterojunctions based on two-dimensional (2D) atomic crystals have been extensively studied in recent years. Herein, we show that both vertical and lateral vdW heterojunctions can be realized with layered molecular crystals using a two-step physical vapor transport (PVT) process. Both types of heterojunctions show clean and sharp interfaces without phase mixing under atomic force microscopy (AFM). They also exhibit a strong interfacial built-in electric field similar to that of their inorganic counterparts. These heterojunctions have greater potential for device applications than individual materials. The lateral heterojunction (LHJ) devices show rectifying characteristics due to the asymmetric energy barrier for holes at the interface, while the vertical heterojunction (VHJ) devices behave like metal–insulator–semiconductor tunnel junctions, with pronounced negative differential conductance (NDC). Our work extends the concept of vdW heterojunctions to molecular materials, which can be generalized to other layered organic semiconductors (OSCs) to obtain new device functionalities.


Scientific Reports | 2015

Defect-Induced Photoluminescence Blinking of Single Epitaxial InGaAs Quantum Dots

Fengrui Hu; Zengle Cao; Chunfeng Zhang; Xiaoyong Wang; Min Xiao

Here we report two types of defect-induced photoluminescence (PL) blinking behaviors observed in single epitaxial InGaAs quantum dots (QDs). In the first type of PL blinking, the “off” period is caused by the trapping of hot electrons from the higher-lying excited state (absorption state) to the defect site so that its PL rise lifetime is shorter than that of the “on” period. For the “off” period in the second type of PL blinking, the electrons relax from the first excited state (emission state) into the defect site, leading to a shortened PL decay lifetime compared to that of the “on” period. This defect-induced exciton quenching in epitaxial QDs, previously demonstrated also in colloidal nanocrystals, confirms that these two important semiconductor nanostructures could share the same PL blinking mechanism.


AIP Advances | 2016

Regulation of oxygen vacancy types on SnO2 (110) surface by external strain

Z. H. Zhou; Y. M. Min; Xiao-Ying Liu; Jianping Ding; Jun-Hong Guo; Fengrui Hu; L. Z. Liu

In tin dioxide nanostructures, oxygen vacancies (OVs) play an important role in their optical properties and thus regulation of both OV concentration and type via external strain is crucial to exploration of more applications. First-principle calculations of SnO2 (110) surface disclose that asymmetric deformations induced by external strain not only lead to its intrinsic surface elastic changes, but also result in different OV formation energy. In the absence of external strain, the energetically favorable oxygen vacancies(EFOV) appear in the bridging site of second layer. When -3.5% external strain is applied along y direction, the EFOV moves into plane site. This can be ascribed that the compressed deformation gives rise to redistribution of electronic wave function near OVs, therefore, formation of newly bond structures. Our results suggest that different type OVs in SnO2 surface can be controlled by strain engineering.

Collaboration


Dive into the Fengrui Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge