Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferdinando Di Cunto is active.

Publication


Featured researches published by Ferdinando Di Cunto.


Cell | 2011

Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs

Yvonne Tay; Lev Kats; Leonardo Salmena; Dror Weiss; Shen Mynn Tan; Ugo Ala; Florian A. Karreth; Laura Poliseno; Paolo Provero; Ferdinando Di Cunto; Judy Lieberman; Isidore Rigoutsos; Pier Paolo Pandolfi

Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs.


Neuron | 2000

Defective Neurogenesis in Citron Kinase Knockout Mice by Altered Cytokinesis and Massive Apoptosis

Ferdinando Di Cunto; Sara Imarisio; Emilio Hirsch; Vania Broccoli; Alessandro Bulfone; Antonio Migheli; Cristiana Atzori; Emilia Turco; Roberta Triolo; Gian Paolo Dotto; Lorenzo Silengo; Fiorella Altruda

Citron-kinase (Citron-K) has been proposed by in vitro studies as a crucial effector of Rho in regulation of cytokinesis. To further investigate in vivo its biologic functions, we have inactivated Citron-K gene in mice by homologous recombination. Citron-K-/- mice grow at slower rates, are severely ataxic, and die before adulthood as a consequence of fatal seizures. Their brains display defective neurogenesis, with depletion of specific neuronal populations. These abnormalities arise during development of the central nervous system due to altered cytokinesis and massive apoptosis. Our results indicate that Citron-K is essential for cytokinesis in vivo but only in specific neuronal precursors. Moreover, they suggest a novel molecular mechanism for a subset of human malformative syndromes of the CNS.


PLOS Computational Biology | 2008

Prediction of human disease genes by human-mouse conserved coexpression analysis.

Ugo Ala; Rosario M. Piro; Elena Grassi; Christian Damasco; Lorenzo Silengo; Martin Oti; Paolo Provero; Ferdinando Di Cunto

Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes.


PLOS Genetics | 2008

Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference

Maria Patrizia Somma; Francesca Ceprani; Elisabetta Bucciarelli; Valeria Naim; Valeria De Arcangelis; Roberto Piergentili; Antonella Palena; Laura Ciapponi; Maria Grazia Giansanti; Claudia Pellacani; Romano Petrucci; Giovanni Cenci; Fiammetta Vernì; Barbara Fasulo; Michael L. Goldberg; Ferdinando Di Cunto; Maurizio Gatti

RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression–based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression–based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins.


FEBS Journal | 2012

Computational approaches to disease‐gene prediction: rationale, classification and successes

Rosario M. Piro; Ferdinando Di Cunto

The identification of genes involved in human hereditary diseases often requires the time‐consuming and expensive examination of a great number of possible candidate genes, since genome‐wide techniques such as linkage analysis and association studies frequently select many hundreds of ‘positional’ candidates. Even considering the positive impact of next‐generation sequencing technologies, the prioritization of candidate genes may be an important step for disease‐gene identification. In this paper we develop a basic classification scheme for computational approaches to disease‐gene prediction and apply it to exhaustively review bioinformatics tools that have been developed for this purpose, focusing on conceptual aspects rather than technical detail and performance. Finally, we discuss some past successes obtained by computational approaches to illustrate their beneficial contribution to medical research.


Molecular Biology of the Cell | 2011

Citron kinase controls abscission through RhoA and anillin

Marta Gai; Paola Camera; Alessandro Dema; Federico Bianchi; Gaia Berto; Elena Scarpa; Giulia Germena; Ferdinando Di Cunto

In this report, we confirm that the RhoA-binding protein citron kinase (CIT-K) is required for midbody abscission in late cytokinesis, while it has little or no role in early cytokinesis. Moreover, we show that CIT-K, despite being commonly considered a RhoA effector, promotes midbody stability through RhoA and anillin during late cytokinesis.


Nature Cell Biology | 2003

Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation

Paola Camera; Jorge Santos Da Silva; Gareth Griffiths; Maria Gabriella Giuffrida; Luciana Ferrara; Vanessa Schubert; Sara Imarisio; Lorenzo Silengo; Carlos G. Dotti; Ferdinando Di Cunto

The actin cytoskeleton is best known for its role during cellular morphogenesis. However, other evidence suggests that actin is also crucial for the organization and dynamics of membrane organelles such as endosomes and the Golgi complex. As in morphogenesis, the Rho family of small GTPases are key mediators of organelle actin-driven events, although it is unclear how these ubiquitously distributed proteins are activated to regulate actin dynamics in an organelle-specific manner. Here we show that the brain-specific Rho-binding protein Citron-N is enriched at, and associates with, the Golgi apparatus of hippocampal neurons in culture. Suppression of the whole protein or expression of a mutant form lacking the Rho-binding activity results in dispersion of the Golgi apparatus. In contrast, high intracellular levels induce localized accumulation of RhoA and filamentous actin, protecting the Golgi from the rupture normally produced by actin depolymerization. Biochemical and functional analyses indicate that Citron-N controls actin locally by assembling together the Rho effector ROCK-II and the actin-binding, neuron-specific, protein Profilin-IIa (PIIa). Together with recent data on endosomal dynamics, our results highlight the importance of organelle-specific Rho modulators for actin-dependent organelle organization and dynamics.


PLOS ONE | 2012

Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer.

Antonio Lembo; Ferdinando Di Cunto; Paolo Provero

A major part of the post-transcriptional regulation of gene expression is affected by trans-acting elements, such as microRNAs, binding the 3′ untraslated region (UTR) of their target mRNAs. Proliferating cells partly escape this type of negative regulation by expressing shorter 3′ UTRs, depleted of microRNA binding sites, compared to non-proliferating cells. Using large-scale gene expression datasets, we show that a similar phenomenon takes place in breast and lung cancer: tumors expressing shorter 3′ UTRs tend to be more aggressive and to result in shorter patient survival. Moreover, we show that a gene expression signature based only on the expression ratio of alternative 3′ UTRs is a strong predictor of survival in both tumors. Genes undergoing 3′UTR shortening in aggressive tumors of the two tissues significantly overlap, and several of them are known to be involved in tumor progression. However the pattern of 3′ UTR shortening in aggressive tumors in vivo is clearly distinct from analogous patterns involved in proliferation and transformation.


Blood | 2010

Comparison of three Tfr2 -deficient murine models suggests distinct functions for TFR2 alpha and beta isoforms in different tissues

Antonella Roetto; Ferdinando Di Cunto; Rosa Maria Pellegrino; Emilio Hirsch; Ornellla Azzolino; Alessandro Bondi; Ilaria Defilippi; Sonia Carturan; B. Miniscalco; Fulvio Riondato; Daniela Cilloni; Lorenzo Silengo; Fiorella Altruda; Clara Camaschella; Giuseppe Saglio

Transferrin receptor 2 (TFR2) is a transmembrane protein that is mutated in hemochromatosis type 3. The TFR2 gene is transcribed in 2 main isoforms: the full-length (alpha) and a shorter form (beta). alpha-Tfr2 is the sensor of diferric transferrin, implicated in the modulation of hepcidin, the main regulator of iron homeostasis. The function of the putative beta-Tfr2 protein is unknown. We have developed a new mouse model (KI) lacking beta-Tfr2 compared with Tfr2 knockout mice (KO). Adult Tfr2 KO mice show liver iron overload and inadequate hepcidin levels relative to body iron stores, even though they increase Bmp6 production. KI mice have normal transferrin saturation, liver iron concentration, hepcidin and Bmp6 levels but show a transient anemia at young age and severe spleen iron accumulation in adult animals. Fpn1 is strikingly decreased in the spleen of these animals. These findings and the expression of beta-Tfr2 in wild-type mice spleen suggest a role for beta-Tfr2 in Fpn1 transcriptional control. Selective inactivation of liver alpha-Tfr2 in KI mice (LCKO-KI) returned the phenotype to liver iron overload. Our results strengthen the function of hepatic alpha-Tfr2 in hepcidin activation, suggest a role for extrahepatic Tfr2 and indicate that beta-Tfr2 may specifically control spleen iron efflux.


Journal of Cell Science | 2002

Essential role of citron kinase in cytokinesis of spermatogenic precursors

Ferdinando Di Cunto; Sara Imarisio; Paola Camera; Carla Boitani; Fiorella Altruda; Lorenzo Silengo

During spermatogenesis, the first morphological indication of spermatogonia differentiation is incomplete cytokinesis, followed by the assembly of stable intercellular cytoplasmic communications. This distinctive feature of differentiating male germ cells has been highly conserved during evolution, suggesting that regulation of the cytokinesis endgame is a crucial aspect of spermatogenesis. However, the molecular mechanisms underlying testis-specific regulation of cytokinesis are still largely unknown. Citron kinase is a myotonin-related protein acting downstream of the GTPase Rho in cytokinesis control. We previously reported that Citron kinase knockout mice are affected by a complex neurological syndrome caused by cytokinesis block and apoptosis of specific neuronal precursors. In this report we show that, in addition, these mice display a dramatic testicular impairment, with embryonic and postnatal loss of undifferentiated germ cells and complete absence of mature spermatocytes. By contrast, the ovaries of mutant females appear essentially normal. Developmental analysis revealed that the cellular depletion observed in mutant testes is caused by increased apoptosis of undifferentiated and differentiating precursors. The same cells display a severe cytokinesis defect, resulting in the production of multinucleated cells and apoptosis. Our data indicate that Citron kinase is specifically required for cytokinesis of the male germ line.

Collaboration


Dive into the Ferdinando Di Cunto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge