Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Gai is active.

Publication


Featured researches published by Marta Gai.


Molecular Biology of the Cell | 2011

Citron kinase controls abscission through RhoA and anillin

Marta Gai; Paola Camera; Alessandro Dema; Federico Bianchi; Gaia Berto; Elena Scarpa; Giulia Germena; Ferdinando Di Cunto

In this report, we confirm that the RhoA-binding protein citron kinase (CIT-K) is required for midbody abscission in late cytokinesis, while it has little or no role in early cytokinesis. Moreover, we show that CIT-K, despite being commonly considered a RhoA effector, promotes midbody stability through RhoA and anillin during late cytokinesis.


Cell Death and Disease | 2016

ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53

Vincent El Ghouzzi; Federico Bianchi; Ivan Molineris; Bryan C. Mounce; Gaia Berto; Malgorzata Rak; Sophie Lebon; Laetitia Aubry; Chiara Tocco; Marta Gai; Alessandra Ma Chiotto; Francesco Sgrò; Gianmarco Pallavicini; Etienne Simon-Loriere; Sandrine Passemard; Marco Vignuzzi; Pierre Gressens; Ferdinando Di Cunto

Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure. In this report, we explored the possible similarities between transcriptional responses induced by ZIKV in human neural progenitors and those elicited by three different genetic mutations leading to severe forms of microcephaly in mice. We found that the strongest similarity between all these conditions is the activation of common P53 downstream genes. In agreement with these observations, we report that ZIKV infection increases total P53 levels and nuclear accumulation, as well as P53 Ser15 phosphorylation, correlated with genotoxic stress and apoptosis induction. Interestingly, increased P53 activation and apoptosis are induced not only in cells expressing high levels of viral antigens but also in cells showing low or undetectable levels of the same proteins. These results indicate that P53 activation is an early and specific event in ZIKV-infected cells, which could result from cell-autonomous and/or non-cell-autonomous mechanisms. Moreover, we highlight a small group of P53 effector proteins that could act as critical mediators, not only in ZIKV-induced microcephaly but also in many genetic microcephaly syndromes.


Cell Death & Differentiation | 2016

Tissue-specific control of midbody microtubule stability by Citron kinase through modulation of TUBB3 phosphorylation

Francesco Sgrò; Federico Bianchi; Mattia Falcone; Gianmarco Pallavicini; Marta Gai; Alessandra Maria Adelaide Chiotto; Ge Berto; Emilia Turco; Yoon Jeung Chang; Wieland B. Huttner; F Di Cunto

Cytokinesis, the physical separation of daughter cells at the end of cell cycle, is commonly considered a highly stereotyped phenomenon. However, in some specialized cells this process may involve specific molecular events that are still largely unknown. In mammals, loss of Citron-kinase (CIT-K) leads to massive cytokinesis failure and apoptosis only in neuronal progenitors and in male germ cells, resulting in severe microcephaly and testicular hypoplasia, but the reasons for this specificity are unknown. In this report we show that CIT-K modulates the stability of midbody microtubules and that the expression of tubulin β-III (TUBB3) is crucial for this phenotype. We observed that TUBB3 is expressed in proliferating CNS progenitors, with a pattern correlating with the susceptibility to CIT-K loss. More importantly, depletion of TUBB3 in CIT-K-dependent cells makes them resistant to CIT-K loss, whereas TUBB3 overexpression increases their sensitivity to CIT-K knockdown. The loss of CIT-K leads to a strong decrease in the phosphorylation of S444 on TUBB3, a post-translational modification associated with microtubule stabilization. CIT-K may promote this event by interacting with TUBB3 and by recruiting at the midbody casein kinase-2α (CK2α) that has previously been reported to phosphorylate the S444 residue. Indeed, CK2α is lost from the midbody in CIT-K-depleted cells. Moreover, expression of the nonphosphorylatable TUBB3 mutant S444A induces cytokinesis failure, whereas expression of the phospho-mimetic mutant S444D rescues the cytokinesis failure induced by both CIT-K and CK2α loss. Altogether, our findings reveal that expression of relatively low levels of TUBB3 in mitotic cells can be detrimental for their cytokinesis and underscore the importance of CIT-K in counteracting this event.


EMBO Reports | 2016

ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules.

Marta Gai; Federico Bianchi; Cristiana Vagnoni; Fiammetta Vernì; Silvia Bonaccorsi; Selina Pasquero; Gaia Berto; Francesco Sgrò; Alessandra Maria Adelaide Chiotto; Laura Annaratone; Anna Sapino; Anna Bergo; Nicoletta Landsberger; Jacqueline Bond; Wieland B. Huttner; Ferdinando Di Cunto

Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT‐stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral‐MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.


PLOS ONE | 2014

The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways

Gaia Berto; Cristina Iobbi; Paola Camera; Elena Scarpa; Corinne Iampietro; Federico Bianchi; Marta Gai; Francesco Sgrò; Flavio Cristofani; Annette Gärtner; Carlos G. Dotti; Ferdinando Di Cunto

In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.


Journal of Biological Chemistry | 2015

Methyl-CpG Binding Protein 2 (MeCP2) Localizes at the Centrosome and Is Required for Proper Mitotic Spindle Organization

Anna Bergo; Marta Strollo; Marta Gai; Isabella Barbiero; Gilda Stefanelli; Sarah Sertic; Clementina Cobolli Gigli; Ferdinando Di Cunto; Charlotte Kilstrup-Nielsen; Nicoletta Landsberger

Background: MeCP2 is a multifunctional protein whose full spectrum of activities remains enigmatic. Results: MeCP2 localizes at the centrosome and at the mitotic spindle. Its loss causes deficient spindle morphology and microtubule nucleation and prolonged mitosis. Conclusion: Through its centrosomal localization, MeCP2 regulates cell growth and cytoskeleton stability. Significance: This novel MeCP2 function may improve our comprehension of MeCP2 under physiological and pathological conditions. Mutations in MECP2 cause a broad spectrum of neuropsychiatric disorders of which Rett syndrome represents the best defined condition. Both neuronal and non-neuronal functions of the methyl-binding protein underlie the related pathologies. Nowadays MeCP2 is recognized as a multifunctional protein that modulates its activity depending on its protein partners and posttranslational modifications. However, we are still missing a comprehensive understanding of all MeCP2 functions and their involvement in the related pathologies. The study of human mutations often offers the possibility of clarifying the functions of a protein. Therefore, we decided to characterize a novel MeCP2 phospho-isoform (Tyr-120) whose relevance was suggested by a Rett syndrome patient carrying a Y120D substitution possibly mimicking a constitutively phosphorylated state. Unexpectedly, we found MeCP2 and its Tyr-120 phospho-isoform enriched at the centrosome both in dividing and postmitotic cells. The molecular and functional connection of MeCP2 to the centrosome was further reinforced through cellular and biochemical approaches. We show that, similar to many centrosomal proteins, MeCP2 deficiency causes aberrant spindle geometry, prolonged mitosis, and defects in microtubule nucleation. Collectively, our data indicate a novel function of MeCP2 that might reconcile previous data regarding the role of MeCP2 in cell growth and cytoskeleton stability and that might be relevant to understand some aspects of MeCP2-related conditions. Furthermore, they link the Tyr-120 residue and its phosphorylation to cell division, prompting future studies on the relevance of Tyr-120 for cortical development.


Small GTPases | 2017

Of rings and spines: The multiple facets of Citron proteins in neural development

Federico Bianchi; Marta Gai; Gaia Berto; Ferdinando Di Cunto

ABSTRACT The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.


Journal of Cell Science | 2018

Citron kinase-dependent F-actin maintenance at midbody secondary ingression sites mediates abscission

Alessandro Dema; Francesca Macaluso; Francesco Sgrò; Gaia Berto; Federico Bianchi; Alessandra Maria Adelaide Chiotto; Gianmarco Pallavicini; Ferdinando Di Cunto; Marta Gai

ABSTRACT Abscission is the final step of cytokinesis whereby the intercellular bridge (ICB) linking the two daughter cells is cut. The ICB contains a structure called the midbody, required for the recruitment and organization of the abscission machinery. Final midbody severing is mediated by formation of secondary midbody ingression sites, where the ESCRT III component CHMP4B is recruited to mediate membrane fusion. It is presently unknown how cytoskeletal elements cooperate with CHMP4B to mediate abscission. Here, we show that F-actin is associated with midbody secondary sites and is necessary for abscission. F-actin localization at secondary sites depends on the activity of RhoA and on the abscission regulator citron kinase (CITK). CITK depletion accelerates loss of F-actin proteins at the midbody and subsequent cytokinesis defects are reversed by restoring actin polymerization. Conversely, midbody hyperstabilization produced by overexpression of CITK and ANLN is reversed by actin depolymerization. CITK is required for localization of F-actin and ANLN at the abscission sites, as well as for CHMP4B recruitment. These results indicate that control of actin dynamics downstream of CITK prepares the abscission site for the final cut. Highlighted Article: Citron kinase is required to maintain F-actin at midbody secondary ingression sites, which is necessary to prepare abscission sites for the final cut.


Cell Death & Differentiation | 2017

MicroRNAs-143 and -145 induce epithelial to mesenchymal transition and modulate the expression of junction proteins

Lidia Avalle; Danny Incarnato; Aurora Savino; Marta Gai; Francesca Marino; Sara Pensa; Isaia Barbieri; Michael B. Stadler; Paolo Provero; Salvatore Oliviero; Valeria Poli

Transforming growth factor (TGF)-β is one of the major inducers of epithelial to mesenchymal transition (EMT), a crucial program that has a critical role in promoting carcinoma’s metastasis formation. MicroRNAs-143 and -145, which are both TGF-β direct transcriptional targets, are essential for the differentiation of vascular smooth muscle cells (VSMC) during embryogenesis, a TGF-β-dependent process reminiscent of EMT. Their role in adult tissues is however less well defined and even ambiguous, as their expression was correlated both positively and negatively with tumor progression. Here we show that high expression of both miRs-143 and -145 in mouse mammary tumor cells expressing constitutively active STAT3 (S3C) is involved in mediating their disrupted cell–cell junctions. Additionally, miR-143 appears to have a unique role in tumorigenesis by enhancing cell migration in vitro and extravasation in vivo while impairing anchorage-independent growth, which may explain the contradictory reports about its role in tumors. Accordingly, we demonstrate that overexpression of either miRNA in the non-transformed mammary epithelial NMuMG cells leads to upregulation of EMT markers and of several endogenous TGF-β targets, downmodulation of a number of junction proteins and increased motility, correlating with enhanced basal and TGF-β-induced SMAD-mediated transcription. Moreover, pervasive transcriptome perturbation consistent with the described phenotype was observed. In particular, the expression of several transcription factors involved in the mitogenic responses, of MAPK family members and, importantly, of several tight junction proteins and the SMAD co-repressor TGIF was significantly reduced. Our results provide important mechanistic insight into the non-redundant role of miRs-143 and -145 in EMT-related processes in both transformed and non-transformed cells, and suggest that their expression must be finely coordinated to warrant optimal migration/invasion while not interfering with cell growth.


Oncotarget | 2016

Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism

Erica Torchiaro; Annalisa Lorenzato; Martina Olivero; Donatella Valdembri; Paolo Armando Gagliardi; Marta Gai; Jessica Erriquez; Guido Serini; Maria Flavia Di Renzo

The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.

Collaboration


Dive into the Marta Gai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Scarpa

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge