Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferenc Jeanplong is active.

Publication


Featured researches published by Ferenc Jeanplong.


Molecular and Cellular Biology | 2002

The Myostatin Gene Is a Downstream Target Gene of Basic Helix-Loop-Helix Transcription Factor MyoD

Michael P. Spiller; Ravi Kambadur; Ferenc Jeanplong; Mark G. Thomas; Julie K. Martyn; John J. Bass; Mridula Sharma

ABSTRACT Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C2C12 cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent “reserve” cells. Our results suggest that myostatin promoter activity is relatively higher during the G1 phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G1-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.


Molecular and Cellular Biochemistry | 2001

Genomic organization and neonatal expression of the bovine myostatin gene

Ferenc Jeanplong; Mridula Sharma; Wayne G. Somers; John J. Bass; Ravi Kambadur

Myostatin belongs to the Transforming Growth Factor-β ((TGF-β) superfamily and is expressed in developing and mature skeletal muscle. Biologically, the role of myostatin seems to be extremely well conserved during evolution since inactivating mutations in myostatin gene cause similar phenotype of heavy muscling in both mice and cattle. In this report we have analysed the genomic structure and neonatal expression of the bovine myostatin gene. The molecular analysis shows that the bovine myostatin gene consists of three exons and two introns. The sizes of the first and second exons are 506 and 374 base pairs (bp) respectively. The size of the third exon was found to be variable in length (1701 or 1812 or 1887 nucleotides), whereas the size of the two introns is 1840 and 2033 bps. In the first exon of bovine myostatin, a single transcription initiation site is found at 133 bps from the translation start codon ATG. Sequencing the 3′ untranslated region indicated that there are multiple polyadenylation signals at 1301, 1401 and 1477 bp downstream from the translation stop codon (TGA). Furthermore, 3′ RACE analysis confirmed that all three polyadenylation sites are used in vivo. Using quantitative RT-PCR we have analysed neonatal expression of myostatin gene. In both the M. biceps femoris and M. semitendinosus, the highest level of myostatin expression was observed on day 1 postnatally, then gradually reduced on days 8 and 14 postnatally. In contrast, in the M. gastrocnemius, myostatin expression was highest on day 14 and lowest on day 8. These results indicate that myostatin gene structure and function is well conserved during evolution and that neonatal expression of myostatin in a number of predominantly fast twitch muscles is differentially regulated.


The Journal of Physiology | 2009

The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone

Jenny M. Oldham; Claire C. Osepchook; Ferenc Jeanplong; Shelley J. Falconer; Kenneth G. Matthews; John V. Conaglen; David F. Gerrard; Heather K. Smith; Richard J. Wilkins; James J. Bass; Christopher D. McMahon

Myostatin inhibits myogenesis and there is reduced abundance of the mature protein in skeletal muscles of adult male compared with female mice. This reduction probably occurs after translation, which suggests that it is a regulated mechanism to reduce the availability of myostatin in males. Reduced myostatin may, thereby, contribute to the development of sexually dimorphic growth of skeletal muscle. Our first objective was to determine if the decrease in mature myostatin protein occurs before the linear growth phase to aid growth, or afterwards to maintain the mass of adult muscle. Mice were killed from 2 to 32 weeks and the gastrocnemius muscle was excised. Myostatin mRNA increased from 2 to 32 weeks and was higher in males than females (P < 0.001). In contrast, mature protein decreased in males after 6 weeks (P < 0.001). Our second objective was to determine if growth hormone (GH) induces the decrease in mature myostatin protein. GH increased myostatin mRNA and decreased the abundance of mature protein in hypophysectomised mice (P < 0.05). Our final objective was to determine if the decrease in mature protein occurs in skeletal muscles of male Stat5b−/− mice (Stat5b mediates the actions of GH). As expected, mature myostatin protein was not reduced in Stat5b−/− males compared with females. However, myostatin mRNA remained higher in males than females irrespective of genotype. These data suggest that: (1) the decrease in mature myostatin protein is developmentally regulated, (2) GH acting via Stat5b regulates the abundance of mature myostatin and (3) GH acts via a non‐Stat5b pathway to regulate myostatin mRNA.


Journal of Histochemistry and Cytochemistry | 2003

Insulin-like Growth Factor-II Delays Early but Enhances Late Regeneration of Skeletal Muscle

Sonnie P. Kirk; Jenny M. Oldham; Ferenc Jeanplong; John J. Bass

This study tested whether administration of insulin-like growth factor-II (IGF-II) enhances muscle regeneration. Rat biceps femoris muscle was damaged with notexin and then IGF-II was administered for up to 7 days. Results show that the proportion of nuclei containing or surrounded by immunoreactivity to MyoD, myogenin, and developmental myosin heavy chain (dMHC) is less in the IGF-II treatment group relative to the control group on days 1 (p = 0.057), 2 (p = 0.034), and 3 (p = 0.047), respectively. This indicates a delay in muscle precursor cell (MPC) proliferation and differentiation with IGF-II administration. This effect was not associated with decreased binding capacity of the type 1 IGF receptor, as determined by receptor autoradiography in day 1 muscle sections (NS), but was associated with inhibition of phagocytic processes. The cross-sectional area of regenerating muscle fibers was significantly greater in the IGF-II treatment group than in the control group by day 7 (p = 0.0092). The enhancing effect of IGF-II on late muscle regeneration, when the main process taking place is fiber enlargement, coincides with the period in which IGF-II is normally expressed by regenerating muscle, indicating that greater endogenous production of IGF-II would be associated with improved regeneration.


PLOS ONE | 2013

Discovery of a Mammalian Splice Variant of Myostatin That Stimulates Myogenesis

Ferenc Jeanplong; Shelley J. Falconer; Jenny M. Oldham; Mark Thomas; Tarra S. Gray; Alex Hennebry; Kenneth G. Matthews; Frederick Kemp; Ketan Patel; Carole Berry; Gina Nicholas; Christopher D. McMahon

Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product.


PLOS ONE | 2014

Translational Signalling, Atrogenic and Myogenic Gene Expression during Unloading and Reloading of Skeletal Muscle in Myostatin-Deficient Mice

Heather K. Smith; Kenneth G. Matthews; Jenny M. Oldham; Ferenc Jeanplong; Shelley J. Falconer; James J. Bass; Mônica Senna-Salerno; Jeremy Bracegirdle; Christopher D. McMahon

Skeletal muscles of myostatin null (Mstn(−/−)) mice are more susceptible to atrophy during hind limb suspension (HS) than are muscles of wild-type mice. Here we sought to elucidate the mechanism for this susceptibility and to determine if Mstn(−/−) mice can regain muscle mass after HS. Male Mstn(−/−) and wild-type mice were subjected to 0, 2 or 7 days of HS or 7 days of HS followed by 1, 3 or 7 days of reloading (n = 6 per group). Mstn(−/−) mice lost more mass from muscles expressing the fast type IIb myofibres during HS and muscle mass was recovered in both genotypes after reloading for 7 days. Concentrations of MAFbx and MuRF1 mRNA, crucial ligases regulating the ubiquitin-proteasome system, but not MUSA1, a BMP-regulated ubiquitin ligase, were increased more in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and concentrations decreased in both genotypes during reloading. Similarly, concentrations of LC3b, Gabarapl1 and Atg4b, key effectors of the autophagy-lysosomal system, were increased further in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and decreased in both genotypes during reloading. There was a greater abundance of 4E-BP1 and more bound to eIF4E in muscles of Mstn(−/−) compared with wild-type mice (P<0.001). The ratio of phosphorylated to total eIF2α increased during HS and decreased during reloading, while the opposite pattern was observed for rpS6. Concentrations of myogenic regulatory factors (MyoD, Myf5 and myogenin) mRNA were increased during HS in muscles of Mstn(−/−) mice compared with controls (P<0.001). We attribute the susceptibility of skeletal muscles of Mstn(−/−) mice to atrophy during HS to an up- and downregulation, respectively, of the mechanisms regulating atrophy of myofibres and translation of mRNA. These processes are reversed during reloading to aid a faster rate of recovery of muscle mass in Mstn(−/−) mice.


Domestic Animal Endocrinology | 2015

Undernutrition regulates the expression of a novel splice variant of myostatin and insulin-like growth factor 1 in ovine skeletal muscle.

Ferenc Jeanplong; Claire C. Osepchook; Shelley J. Falconer; Heather K. Smith; James J. Bass; Christopher D. McMahon; Jenny M. Oldham

Undernutrition suppresses the growth of skeletal muscles and alters the expression of insulin-like growth factor 1 (IGF1), a key mitogen, and myostatin, a potent inhibitor of myogenesis. These changes can explain, at least in part, the reduced growth of skeletal muscles in underfed lambs. We have recently identified a myostatin splice variant (MSV) that binds to and antagonizes the canonical signaling of myostatin. In the present study, we hypothesized that the expression of MSV would be reduced in conjunction with myostatin and IGF1 in response to underfeeding in skeletal muscles of sheep. Young growing ewes were fed either ad libitum or an energy-restricted diet (30% of maintenance requirements) for 28 d. This regime of underfeeding resulted in a 24% reduction in body mass (P < 0.001) and a 36% reduction in the mass of the semitendinosus muscles relative to controls (P < 0.001) by day 28. The concentrations of MSV and IGF1 messenger RNA (mRNA) were reduced (both P < 0.001), but myostatin mRNA was not altered in semitendinosus muscles. Unlike the reduced expression of mRNA, the abundance of MSV protein was increased (P < 0.05) and there was no change in the abundance of myostatin protein. Our results suggest that undernutrition for 28 d decreases the signaling of myostatin by increasing the abundance of MSV protein. Although this action may reduce the growth inhibitory activity of myostatin, it cannot prevent the loss of growth of skeletal muscles during undernutrition.


Journal of Endocrinology | 2017

IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice

Alexander Hennebry; Jenny M. Oldham; Tea Shavlakadze; Miranda D. Grounds; Philip W. Sheard; Marta L. Fiorotto; Shelley J. Falconer; Heather K. Smith; Carole Berry; Ferenc Jeanplong; Jeremy Bracegirdle; Kenneth G. Matthews; Gina Nicholas; Mônica Senna-Salerno; Trevor Watson; Christopher D. McMahon

Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null (Mstn-/-) mice with mice overexpressing Igf1 in skeletal muscle (Igf1+) to generate six genotypes of male mice; wild type (Mstn+/+ ), Mstn+/-, Mstn-/-, Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+ Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris) by 19% over Mstn+/+ , 33% over Mstn+/- and 49% over Mstn-/- (P < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1 Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1+ independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn-/-mice, while phosphorylation of AKTS473 was increased in Igf1+mice (Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6.


American Journal of Physiology-endocrinology and Metabolism | 2003

Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension

Christopher D. McMahon; Ljiljana Popovic; Jenny M. Oldham; Ferenc Jeanplong; Heather K. Smith; Ravi Kambadur; Mridula Sharma; Linda Maxwell; James J. Bass


Journal of Endocrinology | 2003

Prolonged underfeeding of sheep increases myostatin and myogenic regulatory factor Myf-5 in skeletal muscle while IGF-I and myogenin are repressed

Ferenc Jeanplong; John J. Bass; Heather K. Smith; S P Kirk; R Kambadur; Mridula Sharma; Jenny M. Oldham

Collaboration


Dive into the Ferenc Jeanplong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi Kambadur

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mridula Sharma

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge