Jenny M. Oldham
AgResearch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jenny M. Oldham.
Journal of Cellular Physiology | 2000
Sonnie P. Kirk; Jenny M. Oldham; Ravi Kambadur; Mridula Sharma; Pete Dobbie; John J. Bass
Myostatin, a member of the TGF‐β superfamily, is a key negative regulator of skeletal muscle growth. The role of myostatin during skeletal muscle regeneration has not previously been reported. In the present studies, normal Sprague‐Dawley and growth hormone (GH)‐deficient (dw/dw) rats were administered the myotoxin, notexin, in the right M. biceps femoris on day 0. The dw/dw rats then received either saline or human‐N‐methionyl GH (200μg/100g body weight/day) during the ensuing regeneration. Normal and dw/dw M. biceps femoris were dissected on days 1, 2, 3, 5, 9 and 13, formalin‐fixed, then immunostained for myostatin protein. Immunostaining for myostatin revealed high levels of protein within necrotic fibres and connective tissue of normal and dw/dw damaged muscles. Regenerating myotubes contained no myostatin at the time of fusion (peak fusion on day 5), and only low levels of myostatin were observed during subsequent myotube enlargement. Fibres which survived assault by notexin (survivor fibres) contained moderate to high myostatin immunostaining initially. The levels in both normal and dw/dw rat survivor fibres decreased on days 2–3, then increased on days 9–13. In dw/dw rats, there was no observed effect of GH administration on the levels of myostatin protein in damaged muscle. The low level of myostatin observed in regenerating myotubes in these studies suggests a negative regulatory role for myostatin in muscle regeneration. J. Cell. Physiol. 184:356–363, 2000.
Domestic Animal Endocrinology | 1999
John J. Bass; Jenny M. Oldham; Mridula Sharma; Ravi Kambadur
The enlarged muscles of certain breeds of cattle, such as the Belgian Blue, have been shown to result from a marked increase in the number of normal sized muscle fibers. Originally insulin-like growth factors (IGFs) were implicated in this myofiber hyperplasia, as IGFs have been shown to stimulate myoblast proliferation as well as maintain fiber differentiation. Recently it has been reported that mice lacking a myostatin gene, a member of the TGFbeta superfamily, have enhanced skeletal mass resulting from increased muscle fiber number and size. Mutations in this gene have been found in double-muscled cattle, indicating that myostatin is an inhibitor of muscle growth. Myostatin is expressed early in gestation and then maintained to adulthood in certain muscles. Myostatin expression in bovine muscle is highest during gestation when muscle fibers are forming and some of the myogenic regulatory factors have elevated expression over the same period as myostatin. Molecular expression of the IGF axis does not differ between Belgian Blue and normal muscled cattle, and IGF-II mRNA is increased throughout formation of secondary fibers in both breeds. However, myostatin and MyoD expression in muscle differ between normal and hypertrophied muscle cattle breeds. This evidence strongly suggests that lack of myostatin is associated with an increase in fiber number which then results in a marked increase in potential muscle mass in double-muscled cattle.
Endocrinology | 1999
Gina Pete; C. Randall Fuller; Jenny M. Oldham; Dani R. Smith; A. Joseph D’Ercole; C. Ronald Kahn; P. Kay Lund
Organ weight was compared in adult mice with deletion of one (IRS-1−/+) or both (IRS-1−/−) copies of the insulin receptor substrate-1 (IRS-1) gene and IRS-1+/+ littermates. IRS-1−/+ mice showed modest reductions in weight of most organs in proportion to a decrease in body weight. IRS-1−/− mice showed major reductions in weight of heart, liver, and spleen that were directly proportional to a decrease in body weight. In IRS-1−/− mice, kidney and particularly small intestine and brain exhibited proportionately smaller weight reductions, and gastrocnemius muscle showed a proportionately greater weight reduction than the decrease in body weight. Growth deficits in IRS-1−/− mice could reflect impaired actions of multiple hormones or cytokines that activate IRS-1. To assess the requirement for IRS-1 in insulin-like growth factor I (IGF-I)-dependent postnatal growth, IRS-1−/+ mice were cross-bred with mice that widely overexpress a human IGF-I transgene (IGF+) to generate IGF+ and wild-type mice on an IRS-1+/+, I...
The Journal of Physiology | 2009
Jenny M. Oldham; Claire C. Osepchook; Ferenc Jeanplong; Shelley J. Falconer; Kenneth G. Matthews; John V. Conaglen; David F. Gerrard; Heather K. Smith; Richard J. Wilkins; James J. Bass; Christopher D. McMahon
Myostatin inhibits myogenesis and there is reduced abundance of the mature protein in skeletal muscles of adult male compared with female mice. This reduction probably occurs after translation, which suggests that it is a regulated mechanism to reduce the availability of myostatin in males. Reduced myostatin may, thereby, contribute to the development of sexually dimorphic growth of skeletal muscle. Our first objective was to determine if the decrease in mature myostatin protein occurs before the linear growth phase to aid growth, or afterwards to maintain the mass of adult muscle. Mice were killed from 2 to 32 weeks and the gastrocnemius muscle was excised. Myostatin mRNA increased from 2 to 32 weeks and was higher in males than females (P < 0.001). In contrast, mature protein decreased in males after 6 weeks (P < 0.001). Our second objective was to determine if growth hormone (GH) induces the decrease in mature myostatin protein. GH increased myostatin mRNA and decreased the abundance of mature protein in hypophysectomised mice (P < 0.05). Our final objective was to determine if the decrease in mature protein occurs in skeletal muscles of male Stat5b−/− mice (Stat5b mediates the actions of GH). As expected, mature myostatin protein was not reduced in Stat5b−/− males compared with females. However, myostatin mRNA remained higher in males than females irrespective of genotype. These data suggest that: (1) the decrease in mature myostatin protein is developmentally regulated, (2) GH acting via Stat5b regulates the abundance of mature myostatin and (3) GH acts via a non‐Stat5b pathway to regulate myostatin mRNA.
Comparative Biochemistry and Physiology Part A: Physiology | 1997
Allan J. Nixon; Christine A. Ford; Jenny M. Oldham; Allan J. Pearson
Pelage growth cycles are regulated by circulating prolactin in many mammals, but the intercellular mediators of this signaling are unknown. Binding sites for insulin-like growth factors (IGFs) were examined in sheep skin to show changes in distribution and abundance of IGF receptors associated with a prolactin stimulus and the subsequent hair follicle growth cycle. Follicle cycles were induced in New Zealand Wiltshire ewes by a surge in plasma prolactin following a 4-month period of prolactin suppression with bromocriptine. Eight treated and three control sheep were slaughtered at intervals over 43 days during the follicle growth cycle. At 12-20 days after the elevation of prolactin, wool follicles passed through brief catagen and telogen phases, followed by a return to anagen. IGF binding sites were localized in skin sections by incubation with 125I-IGF-I or 125I-IGF-II. Displacement with competitive binding inhibitors (unlabeled IGF-I, IGF-II, des(1-3)IGF-I, des(1-6)IGF-II, or insulin) and affinity cross-linking showed that these binding sites were predominantly IGF type 1 and type 2 (mannose-6-phosphate) receptors. The radioligands bound especially to follicle germinal cells and prekeratinocytes. Increases in specific binding of both radioligands were observed after the rise in prolactin, but prior to anatomical changes in follicles associated with cessation of growth. For IGF-I, highest binding density was observed during catagen in the germinal matrix and dermal papilla cells. For IGF-II, peak density occurred during late anagen/early catagen in the germinal matrix and during telogen in the dermal papilla. These cycle associated changes in receptor availability suggest that IGF receptors are involved in control of the wool growth.
Journal of Histochemistry and Cytochemistry | 2003
Sonnie P. Kirk; Jenny M. Oldham; Ferenc Jeanplong; John J. Bass
This study tested whether administration of insulin-like growth factor-II (IGF-II) enhances muscle regeneration. Rat biceps femoris muscle was damaged with notexin and then IGF-II was administered for up to 7 days. Results show that the proportion of nuclei containing or surrounded by immunoreactivity to MyoD, myogenin, and developmental myosin heavy chain (dMHC) is less in the IGF-II treatment group relative to the control group on days 1 (p = 0.057), 2 (p = 0.034), and 3 (p = 0.047), respectively. This indicates a delay in muscle precursor cell (MPC) proliferation and differentiation with IGF-II administration. This effect was not associated with decreased binding capacity of the type 1 IGF receptor, as determined by receptor autoradiography in day 1 muscle sections (NS), but was associated with inhibition of phagocytic processes. The cross-sectional area of regenerating muscle fibers was significantly greater in the IGF-II treatment group than in the control group by day 7 (p = 0.0092). The enhancing effect of IGF-II on late muscle regeneration, when the main process taking place is fiber enlargement, coincides with the period in which IGF-II is normally expressed by regenerating muscle, indicating that greater endogenous production of IGF-II would be associated with improved regeneration.
PLOS ONE | 2013
Ferenc Jeanplong; Shelley J. Falconer; Jenny M. Oldham; Mark Thomas; Tarra S. Gray; Alex Hennebry; Kenneth G. Matthews; Frederick Kemp; Ketan Patel; Carole Berry; Gina Nicholas; Christopher D. McMahon
Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product.
PLOS ONE | 2014
Heather K. Smith; Kenneth G. Matthews; Jenny M. Oldham; Ferenc Jeanplong; Shelley J. Falconer; James J. Bass; Mônica Senna-Salerno; Jeremy Bracegirdle; Christopher D. McMahon
Skeletal muscles of myostatin null (Mstn(−/−)) mice are more susceptible to atrophy during hind limb suspension (HS) than are muscles of wild-type mice. Here we sought to elucidate the mechanism for this susceptibility and to determine if Mstn(−/−) mice can regain muscle mass after HS. Male Mstn(−/−) and wild-type mice were subjected to 0, 2 or 7 days of HS or 7 days of HS followed by 1, 3 or 7 days of reloading (n = 6 per group). Mstn(−/−) mice lost more mass from muscles expressing the fast type IIb myofibres during HS and muscle mass was recovered in both genotypes after reloading for 7 days. Concentrations of MAFbx and MuRF1 mRNA, crucial ligases regulating the ubiquitin-proteasome system, but not MUSA1, a BMP-regulated ubiquitin ligase, were increased more in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and concentrations decreased in both genotypes during reloading. Similarly, concentrations of LC3b, Gabarapl1 and Atg4b, key effectors of the autophagy-lysosomal system, were increased further in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and decreased in both genotypes during reloading. There was a greater abundance of 4E-BP1 and more bound to eIF4E in muscles of Mstn(−/−) compared with wild-type mice (P<0.001). The ratio of phosphorylated to total eIF2α increased during HS and decreased during reloading, while the opposite pattern was observed for rpS6. Concentrations of myogenic regulatory factors (MyoD, Myf5 and myogenin) mRNA were increased during HS in muscles of Mstn(−/−) mice compared with controls (P<0.001). We attribute the susceptibility of skeletal muscles of Mstn(−/−) mice to atrophy during HS to an up- and downregulation, respectively, of the mechanisms regulating atrophy of myofibres and translation of mRNA. These processes are reversed during reloading to aid a faster rate of recovery of muscle mass in Mstn(−/−) mice.
Domestic Animal Endocrinology | 2015
Ferenc Jeanplong; Claire C. Osepchook; Shelley J. Falconer; Heather K. Smith; James J. Bass; Christopher D. McMahon; Jenny M. Oldham
Undernutrition suppresses the growth of skeletal muscles and alters the expression of insulin-like growth factor 1 (IGF1), a key mitogen, and myostatin, a potent inhibitor of myogenesis. These changes can explain, at least in part, the reduced growth of skeletal muscles in underfed lambs. We have recently identified a myostatin splice variant (MSV) that binds to and antagonizes the canonical signaling of myostatin. In the present study, we hypothesized that the expression of MSV would be reduced in conjunction with myostatin and IGF1 in response to underfeeding in skeletal muscles of sheep. Young growing ewes were fed either ad libitum or an energy-restricted diet (30% of maintenance requirements) for 28 d. This regime of underfeeding resulted in a 24% reduction in body mass (P < 0.001) and a 36% reduction in the mass of the semitendinosus muscles relative to controls (P < 0.001) by day 28. The concentrations of MSV and IGF1 messenger RNA (mRNA) were reduced (both P < 0.001), but myostatin mRNA was not altered in semitendinosus muscles. Unlike the reduced expression of mRNA, the abundance of MSV protein was increased (P < 0.05) and there was no change in the abundance of myostatin protein. Our results suggest that undernutrition for 28 d decreases the signaling of myostatin by increasing the abundance of MSV protein. Although this action may reduce the growth inhibitory activity of myostatin, it cannot prevent the loss of growth of skeletal muscles during undernutrition.
Journal of Experimental Zoology | 1997
Julie K. Martyn; Jenny M. Oldham; J. R. Napier; S. C. Hodgkinson; John J. Bass
The insulin-like growth factors (IGFs) are considered to have a role in the regulation of renal growth and development. The purpose of the present study was to evaluate the effect of nutritional stress on IGF binding in ovine kidney at different postnatal ages. Binding of IGF-I and IGF-II to kidneys of fed and fasted sheep was characterised using histological autoradiography, competitive binding assays, and SDS-PAGE. Nutritional regulation of IGF-I binding was restricted to cells of the proximal tubules of two and 14-day-old lambs where we identified an IGF binding protein which was upregulated in response to fasting and where IGF-II binding was also slightly enhanced. Ontogenetic changes occurred in the glomeruli where IGF-I binding peaked at 6 months (P < or = 0.001), and IGF-II binding increased to 4 months and then plateaued (P < or = 0.01). In the medulla, IGF-II binding was highest at 4 and 6 months (P < or = 0.05). From these studies, we conclude that the IGF axis may play a role in the regulation of the metabolic response to fasting in the kidney of young lambs. Furthermore, the changes with age which are described may reflect a transition period at 4-6 months, from an initial promotion of kidney growth and development in young lambs to establishment of the metabolic and clearance functions in the adult animal.