Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fermin Jimenez-Krassel is active.

Publication


Featured researches published by Fermin Jimenez-Krassel.


Biology of Reproduction | 2005

Numbers of Antral Follicles During Follicular Waves in Cattle: Evidence for High Variation Among Animals, Very High Repeatability in Individuals, and an Inverse Association with Serum Follicle-Stimulating Hormone Concentrations

David S. Burns; Fermin Jimenez-Krassel; J.L.H. Ireland; Phil G. Knight; James J. Ireland

Abstract The extent, causes, and physiological significance of the variation in number of follicles growing during ovarian follicular waves in human beings and cattle are unknown. Therefore, the present study examined the variability and repeatability in numbers of follicles 3 mm or greater in diameter during the follicular waves in bovine estrous cycles, and we determined if the variation in number of follicles during waves was associated with alterations in secretion of FSH, estradiol, inhibin, and insulin-like growth factor I (IGF-I). Dairy cattle were subjected to twice-daily ultrasound analysis to count total number of antral follicles 3 mm or greater in diameter throughout 138 different follicular waves. In another study, blood samples were taken at frequent intervals from cows that consistently had low or very high numbers of follicles during waves and were subjected to immunoassays. Results indicate the following: First, despite an approximately sevenfold variation in number of follicles during waves among animals and marked differences in age, stage of lactation, and season of the year, a very highly repeatable (0.95) number of follicles 3 mm or greater in diameter is maintained during the ovulatory and nonovulatory follicular waves of individuals. Second, variation in number of follicles 3 mm or greater in diameter during waves and the inverse association of number of follicles during waves with FSH are not directly explained by alterations in the patterns of secretion of estradiol, inhibin, or IGF-I. Third, ovarian ultrasound analysis can be used reliably by investigators to identify cattle that consistently have low or high numbers of follicles during waves, thus providing a novel experimental model to determine the causes and physiological significance of the high variation in antral follicle number during follicular waves among single-ovulating species, such as cattle or humans.


Biology of Reproduction | 2008

Antral Follicle Count Reliably Predicts Number of Morphologically Healthy Oocytes and Follicles in Ovaries of Young Adult Cattle

J.L.H. Ireland; D. Scheetz; Fermin Jimenez-Krassel; Axel P. N. Themmen; F. Ward; P. Lonergan; George W. Smith; Gloria I. Perez; A.C.O. Evans; James J. Ireland

Abstract Methods to predict numbers of healthy oocytes in the ovaries of young adults could have important diagnostic relevance in family planning and animal agriculture. We have observed that peak antral follicle count (AFC) determined by serial ovarian ultrasonography during follicular waves is very highly reproducible within individual young adult cattle, despite 7-fold variation among animals. Herein, we tested the hypothesis that AFC is positively associated with the number of morphologically healthy oocytes and follicles in ovaries and with serum concentrations of anti-Müllerian hormone (AMH), an indirect marker for number of healthy follicles and oocytes in ovaries. In the present study, age-matched young adult cattle (12–18 mo old) were subjected to serial ultrasonography to identify animals with a consistently high (≥25 follicles that were ≥3 mm in diameter) or low (≤15 follicles) AFC during follicular waves. Differences in serum AMH concentrations, ovary weight, and number of morphologically healthy and atretic follicles and oocytes were determined. The phenotypic classifications of cattle based on AFC during follicular waves or AMH concentrations both predict reliably the relative number of morphologically healthy follicles and oocytes in ovaries of age-matched young adult cattle.


Biology of Reproduction | 2009

Variation in the Ovarian Reserve Is Linked to Alterations in Intrafollicular Estradiol Production and Ovarian Biomarkers of Follicular Differentiation and Oocyte Quality in Cattle

James J. Ireland; A.E. Zielak-Steciwko; Fermin Jimenez-Krassel; Joseph K. Folger; Anilkumar Bettegowda; D. Scheetz; S.W. Walsh; Francesca Mossa; Philip G. Knight; George W. Smith; P. Lonergan; A.C.O. Evans

Abstract The mechanisms whereby the high variation in numbers of morphologically healthy oocytes and follicles in ovaries (ovarian reserve) may have an impact onovarian function, oocyte quality, and fertility are poorly understood. The objective was to determine whether previously validated biomarkers for follicular differentiation and function, as well as oocyte quality differed between cattle with low versus a high antral follicle count (AFC). Ovaries were removed (n = 5 per group) near the beginning of the nonovulatory follicular wave, before follicles could be identified via ultrasonography as being dominant, from heifers with high versus a low AFC. The F1, F2, and F3 follicles were dissected and diameters determined. Follicular fluid and thecal, granulosal, and cumulus cells and the oocyte were isolated and subjected to biomarker analyses. Although the size and numerous biomarkers of differentiation, such as mRNAs for the gonadotropin receptors, were similar, intrafollicular concentrations of estradiol and the abundance of mRNAs for CYP19A1 in granulosal cells and ESR1, ESR2, and CTSB in cumulus cells were greater, whereas mRNAs for AMH in granulosal cells and TBC1D1 in thecal cells were lower for animals with low versus a high AFC during follicle waves. Hence, variation in the ovarian reserve may have an impact on follicular function and oocyte quality via alterations in intrafollicular estradiol production and expression of key genes involved in follicle-stimulating hormone action (AMH) and estradiol (CYP19A1) production by granulosal cells, function and survival of thecal cells (TBC1D1), responsiveness of cumulus cells to estradiol (ESR1, ESR2), and cumulus cell determinants of oocyte quality (CTSB).


Biology of Reproduction | 2009

Evidence That High Variation in Ovarian Reserves of Healthy Young Adults Has a Negative Impact on the Corpus Luteum and Endometrium During Estrous Cycles in Cattle

Fermin Jimenez-Krassel; Joseph K. Folger; J.L.H. Ireland; George W. Smith; Xiaoying Hou; John S. Davis; P. Lonergan; A.C.O. Evans; James J. Ireland

Abstract Low progesterone concentrations and diminished ovarian reserves (total number of healthy oocytes) during reproductive cycles are linked to infertility in single-ovulating species like cattle. However, the extent and mechanisms whereby the inherently high variation in ovarian reserves may negatively affect progesterone production are unknown. Cattle were chosen to address these questions because the size of their ovarian reserves can be predicted based on an antral follicle count (AFC) during follicular waves. The present study determined if progesterone concentrations, differentiation and function of the corpus luteum (CL), and endometrial thickness differed during reproductive cycles of age-matched healthy young adult cattle with low versus high AFC during follicular waves. The results showed that, despite enhanced LH secretion, progesterone concentrations were lower during estrous cycles for animals with low versus high AFC. Animals with low versus high AFC also had a decreased basal, LH-, and 25-hydroxycholesterol-induced capacity of luteal and granulosal cells to produce progesterone, reduced amounts of STAR and mRNAs for STAR and LH receptor in the CL, and no change in endometrial thickness during estrous cycles. Taken together, these results 1) supported the conclusion that high variation in ovarian reserves of young adults is associated with alterations in differentiation and function of the CL and 2) provided insight into the potential factors that may cause suboptimal luteal function (e.g., heightened LH secretion and desensitization of the LH receptor, diminished LH responsiveness, diminished STAR, inherent deficiency in capacity of granulosal cells to undergo luteinization) and infertility (e.g., low progesterone, poor endometrial growth) in individuals with diminished ovarian reserves.


Reproduction in Domestic Animals | 2012

Effects of Maternal Environment During Gestation on Ovarian Folliculogenesis and Consequences for Fertility in Bovine Offspring

A.C.O. Evans; Francesca Mossa; S.W. Walsh; D. Scheetz; Fermin Jimenez-Krassel; J.L.H. Ireland; George W. Smith; James J. Ireland

Mammals such as cattle, swine, sheep and humans are born with a highly variable number of ovarian follicles and oocytes in the ovaries that dwindle during ageing and are never replenished. This variation in the ovarian reserve is reflected in the numbers of antral follicles in the ovaries at all ages after birth. As numbers of follicles in ovaries are determined during gestation, the role of maternal nutrition and health during gestation (at time of ovarian development in their foetuses) has been investigated as factors that may impact oogonia proliferation and thus follicle numbers post-natally. These studies have found that both nutrition and health impact numbers of follicles in their offspring. The idea that numbers of follicles and oocytes in ovaries impact fertility is a long-held belief in reproductive biology. This has recently been tested in cattle, and it has been shown that cows with a relatively high number of antral follicles in ovaries have higher pregnancy rates, shorter calving to conception intervals and fewer artificial inseminations during the breeding season compared with cows with a lower number of follicles, and similarly, heifers with many follicles had higher pregnancy rates than those with fewer follicles. Studies summarized in this review highlight the importance of the maternal environment during gestation in determining the size of the ovarian reserve in their offspring and also the contribution of the ovarian reserve to subsequent fertility in cattle.


Reproduction | 2010

Evidence that high variation in antral follicle count during follicular waves is linked to alterations in ovarian androgen production in cattle

Francesca Mossa; Fermin Jimenez-Krassel; Joseph K. Folger; J.L.H. Ireland; George W. Smith; P. Lonergan; A.C.O. Evans; James J. Ireland

Androgens have an important role in ovarian follicular growth and function, but circulating androgen concentrations are also associated with ovarian dysfunction, cardiovascular disease, and metabolic disorders in women. The extent and causes of the variation in androgen production in individuals, however, are unknown. Because thecal cells of follicles synthesize androstenedione and testosterone, variation in production of these androgens is hypothesized to be directly related to the inherently high variation in number of healthy growing follicles in ovaries of individuals. To test this hypothesis, we determined whether thecal CYP17A1 mRNA (codes for a cytochrome P450 enzyme involved in androgen synthesis), LH-induced thecal androstenedione production, androstenedione concentrations in follicular fluid, and circulating testosterone concentrations were lower in cattle with relatively low versus high number of follicles growing during follicular waves and whether ovariectomy reduced serum testosterone concentrations. Results demonstrated that cattle with a low follicle number had lower (P<0.05) abundance of CYP17A1 mRNA in thecal cells, reduced (P<0.01) capacity of thecal cells to produce androstenedione in response to LH, lower (P<0.01) androstenedione concentrations in ovulatory follicles, and lower (P<0.02) circulating testosterone concentrations during estrous cycles compared with animals with high follicle number. Also, serum testosterone in cattle with low or high follicle number was reduced by 63 and 70%, respectively, following ovariectomy. In conclusion, circulating androgen concentrations are lower in cattle with low versus high number of follicles growing during follicular waves, possibly because of a reduced responsiveness of thecal cells to LH.


Reproduction | 2009

Gene expression profiling of bovine preovulatory follicles: Gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to the ovulatory process

Qinglei Li; Fermin Jimenez-Krassel; James J. Ireland; George W. Smith

The molecular mechanisms of ovulation and luteinization have not been well established, partially due to lack of a comprehensive understanding of functionally significant genes up-regulated in response to an ovulatory stimulus and the signaling pathways involved. In the present study, transcripts increased in bovine preovulatory follicles following a GnRH-induced LH surge were identified using microarray technology. Increased expression of 368 and 878 genes was detected at 12 (368 genes) and 20 h (878 genes) following GnRH injection. The temporal, cell specific and prostanoid-dependent regulation of selected genes (ADAM10, DBI, CD36, MTSS1, TFG, and RABGAP1) identified from microarray studies and related genes (ADAM17 and AREG) of potential significance were also investigated. Expression of mRNA for DBI and CD36 was simultaneously up-regulated in theca and granulosa cells (GC) following the LH surge, whereas temporal regulation of ADAM10, MTSS1, TFG, and RABGAP1 was distinct in the two cell compartments and increased granulosa TFG and RABGAP1 mRNA were prostanoid dependent. AREG mRNA was increased in theca and GCs at 12 and 24 h following GnRH injection. ADAM17 mRNA was increased in theca, but reduced in GCs 24 h following GnRH injection. The increased ADAM17 and AREG mRNA were prostanoid dependent. ADAM10 and ADAM17 protein were increased specifically in the apex but not the base of preovulatory follicles and the increase in ADAM17 was prostanoid dependent. Results reveal novel information on the regulation of preovulatory gene expression and suggest a potential functional role for ADAM10 and ADAM17 proteins in the region of follicle rupture.


Reproduction, Fertility and Development | 2010

Inherent capacity of the pituitary gland to produce gonadotropins is not influenced by the number of ovarian follicles >= 3 mm in diameter in cattle

Francesca Mossa; Fermin Jimenez-Krassel; S.W. Walsh; D.P. Berry; S.T. Butler; Joseph K. Folger; George W. Smith; J.L.H. Ireland; P. Lonergan; James J. Ireland; A.C.O. Evans

We hypothesised that higher serum FSH concentrations in cattle with low v. high follicle numbers during follicular waves are caused by a different capacity of the pituitary gland to produce gonadotropins. Dairy cows with high (> or = 30; n = 5) and low (< or = 15; n = 5) follicle numbers were selected and serum concentrations of oestradiol and FSH during an oestrous cycle were measured. Cows were ovariectomised at oestrus and bled frequently up to 8 days after ovariectomy. After 33 days, cows were injected with gonadotropin-releasing hormone (GnRH) and bled intensively up to 8 h after GnRH injection. One day later, animals were injected with follicular fluid (FF) from bovine follicles and were bled intensively up to 2 days after the first injection. Serum concentrations of FSH and LH were measured. After 2 days, cows were killed and their pituitary glands collected. Prior to ovariectomy, serum oestradiol concentrations were similar between groups, whereas FSH concentrations were higher in cattle with low v. high numbers of follicles. No differences were detected in serum gonadotropin concentrations after ovariectomy, GnRH injection or FF challenge between groups. The results indicate that the inherent capacity of the pituitary gland to secrete gonadotropins does not differ between cattle with high v. low numbers of follicles during follicular waves.


Journal of Endocrinology | 2007

Evidence that the preovulatory rise in intrafollicular progesterone may not be required for ovulation in cattle

Qinglei Li; Fermin Jimenez-Krassel; Anilkumar Bettegowda; James J. Ireland; George W. Smith

Despite ample evidence pointing to an obligatory involvement of progesterone in ovulation, the mechanisms responsible for the ovulation promoting effects of intrafollicular progesterone are unclear. The objectives of this study were to determine if ovulation, luteinization and the gonadotropin surge-induced regulation of select extracellular matrix-degrading enzymes and their inhibitors, and mRNAs for prostaglandin (PG) biosynthesis and metabolizing enzymes are blocked following suppression of the intrafollicular increase in progesterone. Bovine preovulatory follicles were injected with the 3 beta-hydroxysteroid dehydrogenase inhibitor trilostane or diluent and collected at 0, 12, and 24 h after GnRH induction of the preovulatory LH surge. Intrafollicular trilostane administration blocked the preovulatory increase in follicular fluid progesterone resulting in concentrations similar to those observed at time 0 post-GnRH injection. The preovulatory increase in follicular fluid PGE(2) and PGF(2alpha) was reduced in trilostane-treated follicles and accompanied by upregulation of prostaglandin dehydrogenase mRNA in the granulosal and thecal cells. However, follicle rupture was not blocked by inhibition of the preovulatory rise in intrafollicular progesterone, and normal serum progesterone concentrations were observed during subsequent luteal development. Effects of trilostane administration on preovulatory changes in mRNA abundance and protein/activity in preovulatory follicles for most regulators of extracellular matrix remodeling examined were distinct from changes previously observed following the inhibition of intrafollicular prostaglandin synthesis. Results suggest that the preovulatory increase in intrafollicular progesterone may not be obligatory for bovine follicle rupture, luteinization, or regulation of prominent matrix-degrading proteinases and their inhibitors associated with ovulation.


Biology of Reproduction | 2009

Evidence Supporting a Role for Cocaine- and Amphetamine-Regulated Transcript (CARTPT) in Control of Granulosa Cell Estradiol Production Associated with Dominant Follicle Selection in Cattle

Lihua Lv; Fermin Jimenez-Krassel; Aritro Sen; Anilkumar Bettegowda; Mohan Mondal; Joseph K. Folger; Kyung Bon Lee; James J. Ireland; George W. Smith

We demonstrated previously a negative association of granulosa cell cocaine- and amphetamine-regulated transcript (CARTPT) expression with follicle health status and inhibitory effects of the mature CARTPT peptide (CART) on follicle-stimulating hormone (FSH) signal transduction in vitro, resulting in reduced bovine granulosa cell CYP19A1 mRNA and estradiol production. The objectives of this study were to investigate temporal regulation of granulosa cell CARTPT expression (granulosa cell mRNA and follicular fluid CART peptide concentrations) during follicular waves, CART regulation of androstenedione production (precursor for estradiol biosynthesis) by thecal tissue collected at specific stages of a follicular wave, FSH regulation of granulosa cell CARTPT mRNA expression, and the ability of CART to inhibit granulosa cell estradiol production and CYP19A1 mRNA expression when administered in vivo. CART concentrations in healthy, estrogen-active follicles (estradiol greater than progesterone in follicular fluid) decreased after dominant follicle selection, and CARTPT mRNA was lower in healthy, estrogen-active versus estrogen-inactive atretic follicles (progesterone greater than estradiol) collected at the predeviation and early dominance stages. CART treatment reduced luteinizing hormone-induced androstenedione production by thecal tissue collected at predeviation and early dominance stages but not at later stages of a follicular wave. The FSH or insulin-like growth factor 1 treatment in vitro reduced granulosa cell CARTPT mRNA in a dose-dependent fashion. Administration of CART in vivo into follicles at the early dominance stage reduced follicular fluid estradiol concentrations and granulosa cell CYP19A1 mRNA. Collectively, results support a potential stage-specific regulatory role for CART in negative regulation of estradiol production associated with selection of the dominant follicle.

Collaboration


Dive into the Fermin Jimenez-Krassel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

George W. Smith

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

A.C.O. Evans

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

J.L.H. Ireland

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

P. Lonergan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Francesca Mossa

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Scheetz

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge