Fernanda Canduri
Sao Paulo State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernanda Canduri.
Biochemical and Biophysical Research Communications | 2002
Walter Filgueira de Azevedo; Fernanda Canduri; Nelson José Freitas da Silveira
Flavopiridol has been shown to potently inhibit CDK1 and 2 (cyclin-dependent kinases 1 and 2) and most recently it has been found that it also inhibits CDK9. The complex CDK9-cyclin T1 controls the elongation phase of transcription by RNA polymerase II. The present work describes a molecular model for the binary complex CDK9-flavopiridol. This structural model indicates that the inhibitor strongly binds to the ATP-binding pocket of CDK9 and the structural comparison of the complex CDK2-flavopiridol correlates the structural differences with differences in inhibition of these CDKs by flavopiridol. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known leading structures such as flavones and adenine derivatives.
Biochemical and Biophysical Research Communications | 2002
Walter Filgueira de Azevedo; Renato Tadeu Gaspar; Fernanda Canduri; João Carlos Camera; Nelson José Freitas da Silveira
Here is described a structural model for the binary complex CDK5-roscovitine. Roscovitine has been shown to potently inhibit cyclin-dependent kinases 1, 2 and 5 (CDK1, 2, and 5), and the structure of CDK2 complexed with roscovitine has been reported; however, no structural data are available for complexes of CDK5 with inhibitors. The structural model indicates that roscovitine strongly binds to the ATP-binding pocket of CDK5 and structural comparison of the CDK2-roscovitine complex correlates the structural differences with differences in inhibition of these CDKs by this inhibitor. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known lead structures of adenine derivatives.
Medicinal Chemistry | 2008
Fernanda Canduri; Patricia Cardoso Peres; Rafael Andrade Caceres; Walter Filgueira de Azevedo
The family of Cyclin-Dependent Kinases (CDKs) can be subdivided into two major functional groups based on their roles in cell cycle and/or transcriptional control. CDK9 is the catalytic subunit of positive transcription elongation factor b (P-TEFb). CDK9 is the kinase of the TAK complex (Tat-associated kinase complex), and binds to Tat protein of HIV, suggesting a possible role for CDK9 in AIDS progression. CDK9 complexed with its regulatory partner cyclin T1, serves as a cellular mediator of the transactivation function of the HIV Tat protein. P-TEFb is responsible for the phosphorylation of the carboxyl-terminal domain of RNA Pol II, resulting in stimulation of transcription. Furthermore, the complexes containing CDK9 induce the differentiation in distinct tissue. The CDK9/cyclin T1 complex is expressed at higher level in more differentiated primary neuroectodermal and neuroblastoma tumors, showing a correlation between the kinase expression and tumor differentiation grade. This may have clinical and therapeutical implications for these tumor types. Among the CDK inhibitors two have shown to be effective against CDK9: Roscovitine and Flavopiridol. These two inhibitors prevented the replication of human immunodeficiency virus (HIV) type 1 by blocking Tat transactivation of the HIV type 1 promoter. These compounds inhibit CDKs by binding to the catalytic domain in place of ATP, preventing transfer of a phosphate group to the substrate. More sensitive therapeutic agents of CDK9 can be designed, and structural studies can add information in the understanding of this kinase. The major features related to CDK9 inhibition will be reviewed in this article.
Biochemical and Biophysical Research Communications | 2003
Walter Filgueira de Azevedo; Fernanda Canduri; Denis Marangoni dos Santos; Rafael G. Silva; Jaim S. Oliveira; Luiz Pedro Sório de Carvalho; Luiz Augusto Basso; Maria Anita Mendes; Mario Sergio Palma; Diógenes Santiago Santos
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design. Here we report the structure of human PNP solved to 2.3A resolution using synchrotron radiation and cryocrystallographic techniques. This structure allowed a more precise analysis of the active site, generating a more reliable model for substrate binding. The higher resolution data allowed the identification of water molecules in the active site, which suggests binding partners for potential ligands. Furthermore, the present structure may be used in the new structure-based design of PNP inhibitors.
Biochemical and Biophysical Research Communications | 2003
Denis Marangoni dos Santos; Fernanda Canduri; José Henrique Pereira; Marcio Vinicius Bertacine Dias; Rafael G. Silva; Maria Anita Mendes; Mario Sergio Palma; Luiz Augusto Basso; Walter Filgueira de Azevedo; Diógenes Santiago Santos
In human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic study of human PNP complexed with acyclovir (HsPNP:Acy). Acyclovir is a potent clinically useful inhibitor of replicant herpes simplex virus that also inhibits human PNP but with a relatively lower inhibitory activity (K(i)=90 microM). Analysis of the structural differences among the HsPNP:Acy complex, PNP apoenzyme, and HsPNP:Immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.
Acta Crystallographica Section D-biological Crystallography | 2004
José Henrique Pereira; Jaim Simões de Oliveira; Fernanda Canduri; Marcio Vinicius Bertacine Dias; Mario Sergio Palma; Luiz Augusto Basso; Diógenes Santiago Santos; Walter Filgueira de Azevedo
Tuberculosis made a resurgence in the mid-1980s and now kills approximately 3 million people a year. The re-emergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons and the proliferation of multi-drug-resistant strains have created a need to develop new drugs. Shikimate kinase and other enzymes in the shikimate pathway are attractive targets for development of non-toxic antimicrobial agents, herbicides and anti-parasitic drugs, because the pathway is essential in these species whereas it is absent from mammals. The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid (shikimate) has been determined at 2.3 A resolution, clearly revealing the amino-acid residues involved in shikimate binding. This is the first three-dimensional structure of shikimate kinase complexed with shikimate. In MtSK, the Glu61 residue that is strictly conserved in shikimate kinases forms a hydrogen bond and salt bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81 and Arg136 and the hydroxyl groups interact with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for the elucidation of the mechanism of the shikimate kinase-catalyzed reaction and for the development of a new generation of drugs against tuberculosis.
Biochemical and Biophysical Research Communications | 2002
Walter Filgueira de Azevedo; Fernanda Canduri; Jaim S. Oliveira; Luiz Augusto Basso; Mario Sergio Palma; José Henrique Pereira; Diógenes Santiago Santos
Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based.
Toxicon | 1998
W.F. de Azevedo; Richard John Ward; Fernanda Canduri; A. Soares; José R. Giglio; Raghuvir K. Arni
The crystal structure of Piratoxin-I (PrTX-I) a Lys49 homologue isolated from the venom of Bothrops pirajai has been determined and refined at 2.8 A to a crystallographic residual of 19.7% (Rfree = 29.7%). Amino-acid sequence differences between catalytically active phospholipases and PrTX-I in the putative Ca2+-binding loop, specifically the substitutions Tyr28 --> Asn, Gly32 --> Leu and Asp49 --> Lys, result in an altered conformation of this loop. The analysis of the position of the epsilon-amino group of Lys49 in the PrTX-I structure indicates that it fills the site normally occupied by the calcium ion in the catalytically active phospholipases. In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus (App), PrTX-I is present as a dimer in the crystalline state, as observed in the structures of myotoxin II from Bothrops asper and Bothropstoxin I from Bothrops jararacussu. The two molecules in the asymmetric unit in the crystal structure of PrTX-I are related by a nearly perfect two-fold symmetry axis, yet the dimeric structure is radically different from the dimeric structure of the phospholipase from Crotalus atrox. In the C. atrox structure the dimer interface occludes the active sites, whereas in the PrTX-I structure they are exposed to solvent.
Current Drug Targets | 2007
Fernanda Canduri; Patrícia Cardoso Perez; Rafael Andrade Caceres; Walter Filgueira de Azevedo
Parasitic protozoa infecting humans have a great impact on public health, especially in the developing countries. In many instances, the parasites have developed resistance against available chemotherapeutic agents, making the search for alternative drugs a priority. In line with the current interest in Protein Kinase (PK) inhibitors as potential drugs against a variety of diseases, the possibility that PKs may represent targets for novel anti-parasitic agents is being explored. Research into parasite PKs has benefited greatly from genome and EST sequencing projects, with the genomes from a few species fully sequenced (notably that from the malaria parasite Plasmodium falciparum) and several more under way, the structural features that are important to design specific inhibitors against these PKs will be reviewed in the present work.
Acta Crystallographica Section D-biological Crystallography | 2001
Fernanda Canduri; Lívia das Graças Vieito Lombardi Teodoro; Valmir Fadel; Carla C. B. Lorenzi; V. Hial; Roseli A. S. Gomes; João Ruggiero Neto; W.F.Jr de Azevedo
The molecular structure of human uropepsin, an aspartic proteinase from the urine produced in the form of pepsinogen A in the gastric mucosa, has been determined by molecular replacement using human pepsin as the search model. Crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 50.99, b = 75.56, c = 89.90 A. Crystallographic refinement led to an R factor of 0.161 at 2.45 A resolution. The positions of 2437 non-H protein atoms in 326 residues have been determined and the model contains 143 water molecules. The structure is bilobal, consisting of two predominantly beta-sheet lobes which, as observed in other aspartic proteinases, are related by a pseudo-twofold axis. A model of the uropepsin-pepstatin complex has been constructed based on the high-resolution crystal structure of pepsin complexed with pepstatin.