Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernanda Cechetti is active.

Publication


Featured researches published by Fernanda Cechetti.


Brain Research Bulletin | 2012

Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment

Fernanda Cechetti; Aline de Souza Pagnussat; Paulo Valdeci Worm; Viviane Rostirolla Elsner; Juliana Ben; Marcelo S. Costa; Régis Gemerasca Mestriner; Simone Nardin Weis; Carlos Alexandre Netto

Reduction of cerebral blood flow is an important risk factor for dementia states and other brain dysfunctions. In present study, the effects of permanent occlusion of common carotid arteries (2VO), a well established experimental model of brain ischemia, on memory function were investigated, as assessed by reference and working spatial memory protocols and the object recognition task; cell damage to the hippocampus, as measured through changes in immunoreactivity for GFAP and the neuronal marker NeuN was also studied. The working hypothesis is that metabolic impairment following hypoperfusion will affect neuron and glial function and result in functional damage. Adult male Wistar rats were submitted to the modified 2VO method, with the right common carotid artery being occluded first and the left one week later, and tested seven days, three and six months after the ischemic event. A significant cognitive deficit was found in both reference and working spatial memory, as well as in the object recognition task, three and six months after surgery. Neuronal death and reactive astrogliosis were already present at 7 days and continued for up to 3 months after the occlusion; interestingly, there was no significant reduction in hippocampal volume. Present data suggests that cognitive impairment caused by brain hypoperfusion is long - lasting and persists beyond the time point of recovery from glial activation and neuronal loss.


Neurobiology of Learning and Memory | 2012

Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat

Fernanda Cechetti; Paulo Valdeci Worm; Viviane Rostirolla Elsner; Karine Bertoldi; Eduardo Farias Sanches; Juliana Ben; Ionara Rodrigues Siqueira; Carlos Alexandre Netto

Physical activity impacts functional recovery following stroke in humans, however its effects in experimental animals submitted to chronic cerebral hypoperfusion have not been investigated. The aim of this study was to evaluate the therapeutic potential of exercise, as assessed by cognitive activity in the Morris water maze and the brain oxidative status, through measurement of macromolecules damage, TBARS levels and total cellular thiols, as well as antioxidant enzymes in hippocampus, striatum and cerebral cortex. Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested 3 months after the ischemic event. The effects of three different exercise protocols were examined: pre-ischemia, post-ischemia and pre+post-ischemia. Physical exercise consisted of sessions of 20-min, 3 times per week during 12 weeks (moderate intensity). Rats were submitted to cognitive assessment, in both reference and working spatial memory and after the last testing session were sacrificed to have oxidative stress parameters determined. Hypoperfusion caused a significant cognitive deficit in both spatial water maze tasks and this effect was reversed in rats receiving exercise protocol post and pre+post the ischemic event. Moreover, forced regular treadmill exercise regulated oxidative damage and antioxidant enzyme activity in the hippocampus. These results suggest that physical exercise protects against cognitive and biochemical impairments caused by chronic cerebral hypoperfusion.


Brain Research | 2008

Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus.

Fernanda Cechetti; Cíntia Fochesatto; Denise Scopel; Patrícia Nardin; Carlos Alberto Saraiva Goncalves; Carlos Alexandre Netto; Ionara Rodrigues Siqueira

Daily moderate intensity exercise (2 weeks of 20 min/day of treadmill training), which reduces damage to hippocampal slices from rats submitted to in vitro ischemia, did not modify oxidative stress parameters in the hippocampus nor the brain-derived neurotrophic factor (BDNF) levels in different brain regions. The aim was to investigate whether the modulation of hippocampal oxidative status and/or brain BDNF content is involved in exercise-induced neuroprotection. Wistar rats were submitted to daily exercise in the treadmill and were sacrificed approximately 16 h after the last treadmill running. Some several oxidative stress parameters were determined, specifically the free radical levels, the macromolecule damage, the total reactive antioxidant potential and reactivity levels, which represent the total antioxidant capacity, in the hippocampus. In addition, BDNF levels in different rat cerebral regions (hippocampus, cortex, striatum, and the cerebellum) were measured by ELISA. The used exercise protocol did not affect any oxidative stress parameters studied in the hippocampus, suggesting that it does not cause a significant oxidative stress nor induce adaptations of the cellular antioxidant system. Treadmill training also did not change the BDNF content in brain areas studied. Considering the fact that this exercise protocol have been shown to be neuroprotective, we might speculate that BDNF levels and oxidative status may not be directly involved with the mechanisms of exercise-induced neuroprotection after ischemia.


Brazilian Journal of Medical and Biological Research | 2010

The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate

Fernanda Cechetti

Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(₈,₁₇₂) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(₂,₄₄) = 7.6884, P < 0.001), 3rd (F(₂,₄₄) = 21.481, P < 0.00001) and 4th trials (F(₂,₄₄) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).


Brain Research | 2007

Effect of treadmill exercise on cell damage in rat hippocampal slices submitted to oxygen and glucose deprivation.

Fernanda Cechetti; Amanda Rhod; Fabrício Simão; Katiane Santin; Christianne Gazzana Salbego; Carlos Alexandre Netto; Ionara Rodrigues Siqueira

We have recently demonstrated that high intensity training exercise exacerbates brain damage, while a moderate intensity (2 weeks of 20 min/day of treadmill training) reduces the injury caused by in vitro ischemia, oxygen and glucose deprivation (OGD), to hippocampal slices from Wistar rats. In the present paper, the effect of different running programs on severity of ischemic OGD lesion was examined, by the evaluation of three protocols designed to simulate exercise conditions common to humans: one or three 20-min sessions per week, during 12 weeks (moderate intensity), and two 20-min daily sessions for 3 weeks. OGD caused an increase of lactate dehydrogenase (LDH) release into the incubation media, a marker of tissue necrosis, and a decline of cell viability, as assessed by the decrease of mitochondrial dehydrogenase activity (MTT method). Moderate exercise, three times a week during 12-week treadmill training, decreased LDH release after OGD, while one weekly session and 3 weeks of two daily sessions did not affect OGD-induced LDH released. No exercise protocol evaluated altered MTT reduction. Our data support the hypothesis that moderate intensity exercise reduces hippocampal susceptibility to in vitro ischemia.


Life Sciences | 2012

Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat

Fernanda Cechetti; Paulo Valdeci Worm; Gisele Agustini Lovatel; Felipe dos Santos Moysés; Ionara Rodrigues Siqueira; Carlos Alexandre Netto

AIMS The aim of the present study was to evaluate the neuroprotective effects of environmental enrichment (EE), assessed by cognitive activity in the Morris water maze, and on brain oxidative status, through measurement of macromolecules damage, lipid peroxidation levels, total cellular thiols and antioxidant enzymes in hippocampus, striatum and cerebral cortex. MAIN METHODS Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested three months after the ischemic event. Cognitive and physical stimulation, named Environmental Enrichment, consisted of one-hour sessions run 3 times per week during 12weeks, following two different stimulation protocols: pre-ischemia and pre+post-ischemia. Rats were then tested for both reference and working spatial memory tasks in the water maze and later sacrificed for measurement of oxidative stress parameters. KEY FINDINGS A significant cognitive deficit was found in both spatial tasks after hypoperfusion; this effect was reversed in the 2VO enriched group. Moreover, hippocampal oxidative damage and antioxidant enzyme activity were decreased by environmental enrichment. SIGNIFICANCE These results suggest that both stimulation protocols exert a neuroprotective effect against the cognitive impairment and the reduction of biomarkers for oxidative damage caused by chronic cerebral hypoperfusion.


Brain Research | 2009

Exercise effects on activities of Na+,K+-ATPase, acetylcholinesterase and adenine nucleotides hydrolysis in ovariectomized rats

Juliana Ben; Flávia Mahatma Schneider Soares; Fernanda Cechetti; Fernanda Cenci Vuaden; Carla Denise Bonan; Carlos Alexandre Netto; Angela Terezinha de Souza Wyse

Hormone deficiency following ovariectomy causes activation of Na(+),K(+)-ATPase and acetylcholinesterase (AChE) that has been related to cognitive deficits in experimental animals. Considering that physical exercise presents neuroprotector effects, we decide to investigate whether exercise training would affect enzyme activation in hippocampus and cerebral cortex, as well as adenosine nucleotide hydrolysis in synaptosomes from cerebral cortex of ovariectomized rats. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries), exercise, ovariectomized (Ovx) and Ovx plus exercise. Thirty days after surgery, animals were submitted to one month of exercise training, three times per week. After, rats were euthanized, blood serum was collected and hippocampus and cerebral cortex were dissected. Data demonstrated that exercise reversed the activation of Na(+),K(+)-ATPase and AChE activities both in hippocampus and cerebral cortex of ovariectomized rats. Ovariectomy decreased AMP hydrolysis in cerebral cortex and did not alter adenine nucleotides hydrolysis in blood serum. Exercise per se decreased ADP and AMP hydrolysis in cerebral cortex. On the other hand, AMP hydrolysis in blood serum was increased by exercise in ovariectomized adult rats. Present data support that physical exercise might have beneficial effects and constitute a therapeutic alternative to hormone replacement therapy for estrogen deprivation.


Brain Research | 2011

Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus.

Katiane Santin; Ricardo Fagundes da Rocha; Fernanda Cechetti; André Quincozes-Santos; Daniela Fraga de Souza; Patrícia Nardin; Letícia Rodrigues; Marina Concli Leite; José Cláudio Fonseca Moreira; Christianne Gazzana Salbego; Carlos Alberto Saraiva Goncalves

Physical activity has been related to antioxidant adaptations, which is associated with health benefits, including those to the nervous system. Additionally, available data suggest exercise and a caloric restriction regimen may reduce both the incidence and severity of neurological disorders. Therefore, our aim was to compare hippocampal redox status and glial parameters among sedentary, trained, caloric-restricted sedentary and caloric-restricted trained rats. Forty male adult rats were divided into 4 groups: ad libitum-fed sedentary (AS), ad libitum-fed exercise training (AE), calorie-restricted sedentary (RS) and calorie-restricted exercise training (RE). The caloric restriction (decrease of 30% in food intake) and exercise training (moderate in a treadmill) were carried out for 3 months. Thereafter hippocampus was surgically removed, and then redox and glial parameters were assessed. Increases in reduced glutathione (GSH) levels and total antioxidant reactivity (TAR) were observed in AE, RS and RE. The nitrite/nitrate levels decreased only in RE. We found a decrease in carbonyl content in AE, RS and RE, while no modifications were detected in thiobarbituric acid reactive substances (TBARS). Total reactive antioxidant potential (TRAP), superoxide dismutase (SOD) activity, S100B and glial fibrilary acid protein (GFAP) content did not change, but caloric restriction was able to increase glutamine synthetase (GS) activity in RS and glutamate uptake in RS and RE. Exercise training, caloric restriction and both combined can decrease oxidative damage in the hippocampus, possibly involving modulation of astroglial function, and could be used as a strategy for the prevention of neurodegenerative diseases.


Neurobiology of Learning and Memory | 2010

Running exercise effects on spatial and avoidance tasks in ovariectomized rats

Juliana Ben; Flávia Mahatma Schneider Soares; Emilene B. S. Scherer; Fernanda Cechetti; Carlos Alexandre Netto; Angela Terezinha de Souza Wyse

Since previous studies have shown that ovariectomy impairs memory and cognition, we investigated whether physical exercise would affect ovariectomy-induced memory deficits in inhibitory avoidance and Morris water maze tasks. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries), exercise, ovariectomy (Ovx) and Ovx plus exercise. Thirty days after ovariectomy or sham surgery, animals were submitted to 1 month of treadmill exercise training for 20 min, three times per week. Rats were than tested in inhibitory avoidance and Morris water maze tasks in order to verify ovariectomy effects on aversive and spatial memory performance. Results show that ovariectomized rats were impaired in aversive memory and spatial navigation, both in reference and working memory protocols. Confirming the working hypothesis, ovariectomized rats submitted to exercise had those impairments prevented. These findings support that physical exercise might constitute an important strategy to minimize cognitive deficits found in post-menopausal women.


Neurological Sciences | 2012

Effects of chronic guanosine treatment on hippocampal damage and cognitive impairment of rats submitted to chronic cerebral hypoperfusion

Marcelo Ganzella; Enderson Dias Alves de Oliveira; Daniel Diniz Comassetto; Fernanda Cechetti; Victor Hermes Cereser; Júlia Dubois Moreira; Gisele Hansel; Roberto Farina de Almeida; Denise Barbosa Ramos; Yanier Nuñes Figueredo; Débora Guerini Souza; Jean Pierre Oses; Paulo Valdeci Worm; Matilde Achaval; Carlos Alexandre Netto; Diogo O. Souza

Chronic cerebral hypoperfusion contributes to a cognitive decline related to brain disorders. Its experimental model in rats is a permanent bilateral common carotid artery occlusion (2VO). Overstimulation of the glutamatergic system excitotoxicity due to brain energetic disturbance in 2VO animals seems to play a pivotal role as a mechanism of cerebral damage. The nucleoside guanosine (GUO) exerts extracellular effects including antagonism of glutamatergic activity. Accordingly, our group demonstrated several neuroprotective effects of GUO against glutamatergic excitotoxicity. Therefore, in this study, we evaluated a chronic GUO treatment effects in rats submitted to 2VO. We evaluated the animals performance in the Morris water maze and hippocampal damage by neurons and astrocytes immunohistochemistry. In addition, we investigated the cerebrospinal fluid (CSF) brain derived neurotrophic factor (BDNF) and serum S100B levels. Additionally, the purine CSF and plasma levels were determined. GUO treatment did not prevent the cognitive impairment promoted by 2VO. However, none of the 2VO animals treated with GUO showed differences in the hippocampal regions compared to control, while 20% of 2VO rats not treated with GUO presented loss of pyramidal neurons and increased glial labeling cells in CA1 hippocampal region. In addition, we did not observe differences in CSF BDNF nor serum S100B levels among the groups. Of note, both the 2VO surgery and GUO treatment changed the purine CSF and plasma profile. In conclusion, GUO treatment did not prevent the cognitive impairment observed in 2VO animals, but our data suggest that GUO could be neuroprotective against hippocampal damage induced by 2VO.

Collaboration


Dive into the Fernanda Cechetti's collaboration.

Top Co-Authors

Avatar

Carlos Alexandre Netto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Paulo Valdeci Worm

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Aline de Souza Pagnussat

Universidade Federal de Ciências da Saúde de Porto Alegre

View shared research outputs
Top Co-Authors

Avatar

Ionara Rodrigues Siqueira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Juliana Ben

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Raquel Saccani

University of Caxias do Sul

View shared research outputs
Top Co-Authors

Avatar

Asdrubal Falavigna

University of Caxias do Sul

View shared research outputs
Top Co-Authors

Avatar

Fabiane Nunes Antunes

Universidade Federal de Ciências da Saúde de Porto Alegre

View shared research outputs
Top Co-Authors

Avatar

Flávia Mahatma Schneider Soares

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Grasiela Marcon

University of Caxias do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge