Fernanda Cristina Bezerra Leite
Federal University of Pernambuco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernanda Cristina Bezerra Leite.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011
Will de Barros Pita; Fernanda Cristina Bezerra Leite; Anna Theresa de Souza Liberal; Diogo Ardaillon Simões; Marcos Antonio de Morais
The yeast Dekkera bruxellensis has been regarded as a contamination problem in industrial ethanol production because it can replace the originally inoculated Saccharomyces cerevisiae strains. The present study deals with the influence of nitrate on the relative competitiveness of D. bruxellensis and S. cerevisiae in sugar cane ethanol fermentations. The industrial strain D. bruxellensis GDB 248 showed higher growth rates than S. cerevisiae JP1 strain in mixed ammonia/nitrate media, and nitrate assimilation genes were only slightly repressed by ammonia. These characteristics rendered D. bruxellensis cells with an ability to overcome S. cerevisiae populations in both synthetic medium and in sugar cane juice. The results were corroborated by data from industrial fermentations that showed a correlation between high nitrate concentrations and high D. bruxellensis cell counts. Moreover, the presence of nitrate increased fermentation efficiency of D. bruxellensis cells in anaerobic conditions, which may explain the maintenance of ethanol production in the presence of D. bruxellensis in industrial processes. The presence of high levels of nitrate in sugar cane juice may be due to its inefficient conversion by plant metabolism in certain soil types and could explain the periodical episodes of D. bruxellensis colonization of Brazilian ethanol plants.
SpringerPlus | 2014
Alexandre Libanio Silva Reis; Raquel de Fátima Rodrigues de Souza; Rochane Regina Neves Baptista Torres; Fernanda Cristina Bezerra Leite; Patrícia Maria Guedes Paiva; Esteban Espinosa Vidal; Marcos Antonio de Morais
The discovery of a novel yeast with a natural capacity to produce ethanol from lignocellulosic substrates (second-generation ethanol) is of great significance for bioethanol technology. While there are some yeast strains capable of assimilating cellobiose in aerobic laboratory conditions, the predominant sugar in the treatment of lignocellulosic material, little is known about this ability in real industrial conditions. Fermentations designed to simulate industrial conditions were conducted in synthetic medium with glucose, sucrose, cellobiose and hydrolyzed pre-treated cane bagasse as a different carbon source, with the aim of further characterizing the fermentation capacity of a promising Dekkera bruxellensis yeast strain, isolated from the bioethanol process in Brazil. As a result, it was found (for the first time in oxygen-limiting conditions) that the strain Dekkera bruxellensis GDB 248 could produce ethanol from cellobiose. Moreover, it was corroborated that the cellobiase activity characterizes the enzyme candidate in semi-purified extracts (β-glucosidase). In addition, it was demonstrated that GDB 248 strain had the capacity to produce a higher acetic acid concentration than ethanol and glycerol, which confirms the absence of the Custer effect with this strain in oxygen-limiting conditions. Moreover, it is also being suggested that D. bruxellensis could benefit Saccharomyces cerevisiae and outcompete it in the industrial environment. In this way, it was confirmed that D. bruxellensis GDB 248 has the potential to produce ethanol from cellobiose, and is a promising strain for the fermentation of lignocellulosic substrates.
Bioresource Technology | 2013
Nicole Teixeira Sehnem; Angela da Silva Machado; Fernanda Cristina Bezerra Leite; Will de Barros Pita; Marcos Antonio de Morais; Marco Antônio Záchia Ayub
The aims of this work were to obtain, by evolutionary engineering, an industrial strain of Saccharomyces cerevisiae tolerant to high concentrations of HMF and to determine the expression levels of genes previously described as responsible for this tolerance. Cells were grown under anaerobic and oxygen limited conditions, in the presence of glucose or sucrose as carbon sources. P6H9 strain presented high expression levels for genes ADH7 and ARI1 in presence of HMF. This tolerant strain also showed higher ethanol productivity, biomass formation and alcohol dehydrogenase activity comparing to sensitive strains. Results suggest that S. cerevisiae P6H9 strain presents potential to be used for second-generation ethanol production.
Yeast | 2013
Will de Barros Pita; Ievgeniia Tiukova; Fernanda Cristina Bezerra Leite; Volkmar Passoth; Diogo Ardaillon Simões; Marcos Antonio de Morais
A previous study showed that the use of nitrate by Dekkera bruxellensis might be an advantageous trait when ammonium is limited in sugarcane substrate for ethanol fermentation. The aim of the present work was to evaluate the influence of nitrate on the yeast physiology during cell growth in different carbon sources under oxygen limitation. If nitrate was the sole source of nitrogen, D. bruxellensis cells presented slower growth, diminished sugar consumption and growth‐associated ethanol production, when compared to ammonium. These results were corroborated by the increased expression of genes involved in the pentose phosphate (PP) pathway, the tricarboxylic acid (TCA) cycle and ATP synthesis. The presence of ammonium in the mixed medium restored most parameters to the standard conditions. This work may open up a line of investigation to establish the connection between nitrate assimilation and energetic metabolism in D. bruxellensis and their influence on its fermentative capacity in oxygen‐limited or oxygen‐depleted conditions. Copyright
Plasmid | 2013
Fernanda Cristina Bezerra Leite; Rute Salgues Gueiros dos Anjos; Anna Carla Moreira Basílio; Guilherme Felipe Carvalho Leal; Diogo Ardaillon Simões; Marcos A. de Morais
The development of efficient tools for genetic modification of industrial yeast strains is one of the challenges that face the use of recombinant cells in industrial processes. In this study, we examine how the construction of two complementary integrative vectors can fulfill the major requirements of industrial recombinant yeast strains: the use of lactose assimilation genes as a food-grade yeast selection marker, and a system of integration that does not leave hazardous genes in the host genome and involves minimal interference in the yeast physiology. The pFB plasmid set was constructed to co-integrate both LAC4-based and LAC12-based cassettes into the ribosomal DNA (rDNA) locus to allow yeast cells to be selected in lactose medium. This phenotype can also be used to trace the recombinant cells in the environment by simply being plated on X-gal medium. The excisable trait of the LAC12 marker allows the introduction of many different heterologous genes, and makes it possible to introduce a complete heterologous metabolic pathway. The cloned heterologous genes can be highly expressed under the strong and constitutive TPI1 gene promoter, which can be exchanged for easy digestion of enzymes if necessary. This platform was introduced into Saccharomyces cerevisiae JP1 industrial strain where a recombinant with high stability of markers was produced without any change in the yeast physiology. Thus, it proved to be an efficient tool for the genetic modification of industrial strains.
Yeast | 2014
Denise Castro Parente; Esteban Espinosa Vidal; Fernanda Cristina Bezerra Leite; Will de Barros Pita; Marcos Antonio de Morais
The distilled spirit made from sugar cane juice, also known as cachaça, is a traditional Brazilian beverage that in recent years has increased its market share among international distilled beverages. Several volatile compounds produced by yeast cells during the fermentation process are responsible for the unique taste and aroma of this drink. The yeast Dekkera bruxellensis has acquired increasing importance in the fermented beverage production, as the different metabolites produced by this yeast may be either beneficial or harmful to the end‐product. Since D. bruxellensis is often found in the fermentation processes carried out in ethanol fuel distillation in Brazil, we employed this yeast to analyse the physiological profile and production of aromatic compounds and to examine whether it is feasible to regard it as a cachaça‐producing microorganism. The assays were performed on a small scale and simulated the conditions for the production of handmade cachaça. The results showed that the presence of aromatic and branched‐chain amino acids in the medium has a strong influence on the metabolism and production of flavours by D. bruxellensis. The assimilation of these alternative nitrogen sources led to different fermentation yields and the production of flavouring compounds. The influence of the nitrogen source on the metabolism of fusel alcohols and esters in D. bruxellensis highlights the need for further studies of the nitrogen requirements to obtain the desired level of sensory compounds in the fermentation. Our results suggest that D. bruxellensis has the potential to play a role in the production of cachaça. Copyright
Letters in Applied Microbiology | 2016
Fernanda Cristina Bezerra Leite; D.V.da R. Leite; Luciana Filgueira Pereira; W. de Barros Pita; M.A. de Morais
Dekkera bruxellensis hit the spotlight in the past decade mostly due to its rather high ability to adapt to several different fermentation processes. This yeast relies on different genetic and physiological aspects to achieve and preserve its high industrial fitness and some of these traits are shared with Saccharomyces cerevisiae. We have previously described that D. bruxellensis is unable to make use of accumulating trehalose as a strategy for cell adaptation and survival in the industrial scenario, as opposed to S. cerevisiae. Since trehalose is often involved in mechanisms related to cell protection, we aimed to investigate both cause and effect of the absence of this metabolite in the cell adaptive capacity in the industrial environment. Our results indicate that the major cause for the nonaccumulation of trehalose is the high constitutive activity of neutral trehalase. Therefore, the rate of trehalose degradation could be higher than its rate of synthesis, preventing accumulation. Altogether, our data elucidate the mechanisms involved in the lack of trehalose accumulation in D. bruxellensis as well as evaluates the implications of this feature.
Yeast | 2018
Denise Castro Parente; Danielli Batista Bezerra Cajueiro; Irina Charlot Peña Moreno; Fernanda Cristina Bezerra Leite; Will de Barros Pita; Marcos Antonio de Morais
In the last years several reports have reported the capacity of the yeast Dekkera (Brettanomyces) bruxellensis to survive and adapt to the industrial process of alcoholic fermentation. Much of this feature seems to relate to the ability to assimilate limiting sources of nutrients, or somehow some that are inaccessible to Saccharomyces cerevisiae, in particular the sources of nitrogen. Among them, amino acids (AA) are relevant in terms of beverage musts, and could also be important for bioethanol. In view of the limited knowledge on the control of AA, the present work combines physiological and genetic studies to understand how it operates in D. bruxellensis in response to oxygen availibility. The results allowed separation of the AA in three groups of preferentiality and showed that glutamine is the preferred AA irrespective of the presence of oxygen. Glutamate and aspartate were also preferred AA in anaerobiosis, as indicated by the physiological data. Gene expression experiments showed that, apart from the conventional nitrogen catabolic repression mechanism that is operating in aerobiosis, there seems to be an oxygen‐independent mechanism acting to overexpress key genes like GAP1, GDH1, GDH2 and GLT1 to ensure adequate anaerobic growth even in the presence of non‐preferential nitrogen source. This could be of major importance for the industrial fitness of this yeast species.
Fems Yeast Research | 2013
Fernanda Cristina Bezerra Leite; Thiago Olitta Basso; Will de Barros Pita; Andreas Karoly Gombert; Diogo Ardaillon Simões; Marcos Antonio de Morais
Tumor Biology | 2016
Géssica Lima; Erinaldo Santos; Hildson Dornelas Angelo; Micheline Oliveira; Sandra de Andrade Heráclio; Fernanda Cristina Bezerra Leite; Celso P. de Melo; Sergio Crovella; Maria Bernadete Souza Maia; Paulo Roberto Eleutério de Souza