Fernando H. F. Alves
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando H. F. Alves.
Current Neuropharmacology | 2013
Carlos C. Crestani; Fernando H. F. Alves; Felipe V. Gomes; Leonardo B. M. Resstel; F.M.A. Corrêa; James P. Herman
The bed nucleus of the stria terminalis (BNST) is a heterogeneous and complex limbic forebrain structure, which plays an important role in controlling autonomic, neuroendocrine and behavioral responses. The BNST is thought to serve as a key relay connecting limbic forebrain structures to hypothalamic and brainstem regions associated with autonomic and neuroendocrine functions. Its control of physiological and behavioral activity is mediated by local action of numerous neurotransmitters. In the present review we discuss the role of the BNST in control of both autonomic and neuroendocrine function. A description of BNST control of cardiovascular and hypothalamus-pituitary-adrenal axisactivity at rest and during physiological challenges (stress and physical exercise) is presented. Moreover, evidence for modulation of hypothalamic magnocellular neurons activity is also discussed. We attempt to focus on the discussion of BNST neurochemical mechanisms. Therefore, the source and targets of neurochemical inputs to BNST subregions and their role in control of autonomic and neuroendocrine function is discussed in details.
Neuroscience | 2008
L.B.M. Resstel; Fernando H. F. Alves; Daniel G. Reis; Carlos C. Crestani; F.M.A. Corrêa; Francisco S. Guimarães
There is conflicting evidence concerning the role of the bed nucleus of the stria terminalis (BNST) in fear and anxiety-elicited behavior. Most of the studies investigating this role, however, employed irreversible lesions of this nucleus. The objective of the present study was to investigate the effects of an acute and reversible inactivation of the BNST in rats submitted to the Vogel conflict test (VCT) and contextual fear conditioning, two widely employed animal models that are responsive to prototypal anxiolytic drugs. Male Wistar rats were submitted to stereotaxic surgery to bilaterally implant cannulae into the BNST. Ten minutes before the test they received bilateral microinjections of cobalt chloride (CoCl(2)) (1 mM/100 nL), a nonselective synapse blocker. CoCl(2) produced anxiolytic-like effects in tests, increasing the number of punished licks in the VCT and decreasing freezing behavior and the increase in mean arterial blood pressure and heart rate of animals re-exposed to the context where they had received electrical foot shocks 24 h before. The results indicate that the BNST is engaged in behavioral responses elicited by punished stimuli and aversively conditioned contexts, reinforcing its proposed role in anxiety.
Stress | 2009
Carlos C. Crestani; Fernando H. F. Alves; Rodrigo Fiacadori Tavares; F.M.A. Corrêa
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1 nmol/100 nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective α1-adrenoceptor antagonist WB4101 (15 nmol/100 nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the α2-adrenoceptor antagonist RX821002 or the β-adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that α1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2 mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local α1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.
Journal of Psychopharmacology | 2012
Felipe V. Gomes; Daniel G. Reis; Fernando H. F. Alves; F.M.A. Corrêa; Francisco S. Guimarães; Leonardo B. M. Resstel
Systemic administration of cannabidiol (CBD) attenuates cardiovascular and behavioral changes induced by re-exposure to a context that had been previously paired with footshocks. Previous results from our group using cFos immunohistochemistry suggested that the bed nucleus of the stria terminalis (BNST) is involved in this effect. The mechanisms of CBD effects are still poorly understood, but could involve 5-HT1A receptor activation. Thus, the present work investigated if CBD administration into the BNST would attenuate the expression of contextual fear conditioning and if this effect would involve the activation of 5-HT1A receptors. Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (six footshocks, 1.5 mA/3 s). Twenty-four hours later freezing and cardiovascular responses (mean arterial pressure and heart rate) to the conditioning box were measured for 10 min. CBD (15, 30 or 60 nmol) or vehicle was administered 10 min before the re-exposure to the aversive context. The second experiment was similar to the first one except that animals received microinjections of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) 5 min before CBD (30 nmol) treatment. The results showed that CBD (30 and 60 nmol) treatment significantly reduced the freezing and attenuated the cardiovascular responses induced by re-exposure to the aversive context. Moreover, WAY100635 by itself did not change the cardiovascular and behavioral response to context, but blocked the CBD effects. These results suggest that CBD can act in the BNST to attenuate aversive conditioning responses and this effect seems to involve 5-HT1A receptor-mediated neurotransmission.
Neuroscience Research | 2010
Carlos C. Crestani; Fernando H. F. Alves; Cristiane Busnardo; Leonardo B. M. Resstel; F.M.A. Corrêa
In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after i.v. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity.
Stress | 2010
Carlos C. Crestani; Rodrigo Fiacadori Tavares; Fernando H. F. Alves; Leonardo B. M. Resstel; F.M.A. Corrêa
In the present study, we evaluated cardiac baroreflex responses of rats submitted to acute restraint stress. The baroreflex was tested: immediately before, during a 30 min exposure to restraint stress, as well as 30 and 60 min after ending the stress session (recovery period). Restraint increased both mean arterial pressure (MAP) and heart rate (HR). The magnitude of tachycardiac responses evoked by intravenous infusion of sodium nitroprusside was higher during restraint stress, whereas that of bradycardiac responses evoked by intravenous infusion of phenylephrine was decreased. Restraint-evoked baroreflex changes were still observed at 30 min into the recovery period, although MAP and HR values had already returned to control values. The baroreflex was back to control values at 60 min of the recovery period. Intravenous administration of the selective β1-adrenoceptor antagonist atenolol blocked the restraint-evoked increase in the tachycardiac baroreflex response, but did not affect the effects on the bradycardiac response. In conclusion, the present results suggest that psychological stresses, such as those resulting from acute restraint, affect the baroreflex. Restraint facilitated the tachycardiac baroreflex response and reduced the bradycardiac response. Restraint-related effects on baroreflex persisted for at least 30 min after ending restraint, although MAP and HR had already returned to control levels. The cardiac baroreflex returned to control values 60 min after the end of restraint, indicating non-persistent effects of acute restraint on the baroreflex. Results also indicate that the influence of restraint stress on the baroreflex tachycardiac response is mainly dependent on cardiac sympathetic activity, whereas the action on the bradycardiac response is mediated by the cardiac parasympathetic component.
European Neuropsychopharmacology | 2013
Cristiane Busnardo; Fernando H. F. Alves; Carlos C. Crestani; Am erica A. Scopinho; Leonardo B. M. Resstel; F.M.A. Corrêa
In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress.
Journal of Neuroscience Research | 2009
Fernando H. F. Alves; Carlos C. Crestani; Leonardo B. M. Resstel; F.M.A. Corrêa
The bed nucleus of the stria terminalis (BST) plays a tonic role modulating the baroreflex bradycardiac response. In the present study, we verified whether local BST glutamatergic receptors and nitric oxide (NO) system modulate baroreflex bradycardiac responses. Bilateral BST‐ N‐methyl‐D‐aspartate (NMDA) receptor inhibition by treatment with the selective NMDA receptor antagonist LY235959 increased bradycardiac response to mean arterial pressure increases. Treatment with the selective non‐NMDA antagonist NBQX did not affect reflex bradycardia. These results suggest an involvement of local NMDA receptors in the BST‐related tonic inhibitory modulation of baroreflex bradycardiac response. BST treatment with the nonselective NO synthase (NOS) inhibitor L‐NAME or the selective neuronal NOS (nNOS) inhibitor Nω‐propyl‐L‐arginine increased bradycardiac response, indicating that NO generated by nNOS activation modulates baroreflex. The NO involvement was further reinforced by observation that BST treatment with the NO scavenger carboxy‐PTIO caused an effect similar to that observed after NMDA receptor blockade or treatment with NOS inhibitors. Additionally, it was observed that LY235959 effects on baroreflex bradycardiac response were reverted by BST treatment with the NO‐donor sodium nitroprusside, suggesting an NMDA receptor–NO interaction. Baroreflex bradycardiac responses observed before and after BST treatment with LY235959 or Nω‐propyl‐L‐arginine were no longer different when animals were pretreated intravenously with the anticholinergic drug homatropine methyl bromide. These results indicate that parasympathetic activation accounts for the effects observed after BST pharmacological manipulation. In conclusion, our data point out that local NMDA and nNOS interaction mediates the tonic inhibitory influence of the BST on the baroreflex bradycardiac response, modulating the parasympathetic cardiac activity.
Brain Research | 2007
Fernando H. F. Alves; Carlos C. Crestani; L.B.M. Resstel; F.M.A. Corrêa
The bed nucleus of stria terminalis (BST) has been reported to be involved in central cardiovascular control in rat. We presently report on the cardiovascular effects of carbachol (CBH) microinjection into the BST as well as on local receptor and peripheral mechanisms involved in their mediation. Microinjection of CBH (0.1 to 3 nmol/100 nL) into the BST of anesthetized rats caused dose-related pressor and bradycardiac responses. The cardiovascular response evoked by 1 nmol of CBH was blocked by local microinjection of the nonselective muscarinic receptor antagonist atropine (3 nmol) or the selective M(2)-muscarinic receptor antagonist 4-DAMP (2 nmol). Microinjection of the selective M(1)-muscarinic receptor antagonist pirenzepine (6 nmol) did not affect cardiovascular responses to CBH, suggesting their mediation by local BST M(2)-muscarinic receptors. Cardiovascular responses to CBH microinjected in the BST were markedly reduced in urethane-anesthetized rats. The pressor response was potentiated by i.v. pretreatment with the ganglion blocker pentolinium (10 mg/kg) and blocked by i.v. pretreatment with the vasopressin antagonist dTyr(CH2)5(Me)AVP (50 microg/kg), suggesting involvement of circulating vasopressin in response mediation. In conclusion, results suggest that microinjection of CBH in the BST activates local M(2)-muscarinic receptor evoking pressor and bradycardiac responses, which are mediated by acute vasopressin release into circulation.
British Journal of Pharmacology | 2008
Carlos C. Crestani; Fernando H. F. Alves; L.B.M. Resstel; F.M.A. Corrêa
We have previously shown that noradrenaline microinjected into the bed nucleus of stria terminalis (BST) elicited pressor and bradycardiac responses in unanaesthetized rats. In the present study, we investigated the subtype of adrenoceptors that mediates the cardiovascular response to noradrenaline microinjection into the BST.