Nilson Carlos Ferreira-Junior
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nilson Carlos Ferreira-Junior.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Nilson Carlos Ferreira-Junior; Alessandra G. Fedoce; Fernando H. F. Alves; F.M.A. Corrêa; Leonardo B. M. Resstel
Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB(1) receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB(1) receptors modulate baroreflex activity. We found that bilateral microinjection of the CB(1) receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB(1) receptors, which modulate local glutamate release.
Journal of Neuroscience Research | 2013
Nilson Carlos Ferreira-Junior; Alessandra G. Fedoce; Fernando H. F. Alves; Leonardo B. M. Resstel
Neural reflex mechanisms, such as the baroreflex, are involved in regulating cardiovascular system activity. Previous results showed that the ventral portion of the medial prefrontal cortex (vMPFC) is involved in modulation only of the cardiac baroreflex bradycardic component. Moreover, vMPFC N‐methyl‐D‐aspartate (NMDA) receptors modulate the bradycardia baroreflex, but the baroreflex tachycardic component has not been investigated. Furthermore, glutamatergic neurotransmission into the vMPFC is involved in activation of the cardiac sympathetic and parasympathetic nervous system. Finally, it has been demonstrated that glutamatergic neurotransmission into the vMPFC can be modulated by the endocannabinoid system and that activation of the CB1 cannabinoid receptor by anandamide, an endocannabinoid, can decrease both cardiac baroreflex bradycardic and tachycardic responses. Thus, there is the possibility that glutamatergic neurotransmission into the vMPFC does not modulate only the cardiac bradycardic component of the baroreflex. Therefore, the present study investigated whether glutamatergic neurotransmission into the vMPFC modulates both cardiac baroreflex bradycardic and tachycardic responses. We found that vMPFC bilateral microinjection of the NMDA receptor antagonist AP7 (4 nmol/200 nl), of a selective inhibitor of neuronal nitric oxide (NO) synthase N‐propyl (0.08 nmol/200 nl), of the NO scavenger carboxy‐PTIO (2 nmol/200 nl), or of the NO‐sensitive guanylate cyclase ODQ (2 nmol/200 nl) decreased the baroreflex activity in unanesthetized rats. Therefore, our results demonstrate the participation of NMDA receptors, production of NO, and activation of guanylate cyclase in the vMPFC in the modulation of both cardiac baroreflex bradycardic and tachycardic responses.
Experimental Physiology | 2013
Cristiane Busnardo; Nilson Carlos Ferreira-Junior; Josiane C. Cruz; Benedito H. Machado; F.M.A. Corrêa; Leonardo B. M. Resstel
• What is the central question of this study? The hypothesis that nitric oxide and NMDA glutamate receptor activation modulate cardiovascular responses to the microinjection of methyl ATP into the paraventricular nucleus (PVN) was tested in the present study. • What is the main finding and its importance? The cardiovascular responses that are evoked by the microinjection of methyl ATP into the PVN involve NO production that promotes glutamate release and a subsequent activation of NMDA glutamate receptors in postsynaptic pre‐autonomic neurons, modulating sympathetic nerve activity. Data show new insights into the role of the ATP–NO–glutamate pathway in the PVN in cardiovascular modulation.
Autonomic Neuroscience: Basic and Clinical | 2015
Eduardo Albino Trindade Fortaleza; Nilson Carlos Ferreira-Junior; Davi Campos Lagatta; L.B.M. Resstel; F.M.A. Corrêa
The medial amygdaloid nucleus (MeA) is involved in cardiovascular control. In the present study we report the effect of MeA pharmacological ablations caused by bilateral microinjections of the nonselective synaptic blocker CoCl2 on cardiac baroreflex responses in rats. MeA synaptic inhibition evoked by local bilateral microinjection of 100 nL of CoCl2 (1 mM) did not affect blood pressure or heart rate baseline, suggesting no tonic MeA influence on resting cardiovascular parameters. However, 10 min after CoCl2 microinjection into the MeA of male Wistar rats, the reflex bradycardic response evoked by intravenous infusion of phenylephrine was significantly enhanced when compared with the reflex bradycardic response observed before CoCl2. The treatment did not affect the tachycardic responses to the intravenous infusion of sodium nitroprusside (SNP). Baroreflex activity returned to control values 60 min after CoCl2 microinjections, confirming a reversible blockade. The present results indicate an involvement of the MeA in baroreflex modulation, suggesting that synapses in the MeA have an inhibitory influence on the bradycardic component of the baroreflex in conscious rats.
Frontiers in Molecular Neuroscience | 2017
Franciele F. Scarante; Carla Vila-Verde; Vinícius L. Detoni; Nilson Carlos Ferreira-Junior; Francisco S. Guimarães; Alline C. Campos
Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia. The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function. Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus. Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes. Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels. Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.
British Journal of Pharmacology | 2015
Davi Campos Lagatta; Nilson Carlos Ferreira-Junior; L.B.M. Resstel
The ventral portion of the medial prefrontal cortex (vMPFC) comprises the infralimbic (IL), prelimbic (PL) and dorsopenducular (DP) cortices. The IL and PL regions facilitate the baroreceptor reflex arc. This facilitatory effect on the baroreflex is thought to be mediated by vMPFC glutamatergic transmission, through NMDA receptors. The glutamatergic transmission can be modulated by other neurotransmitters, such as the endocannabinoids, which are agonists of the TRPV1 receptor. TRPV1 channels facilitate glutamatergic transmission in the brain. Thus, we hypothesized that TRPV1 receptors in the vMPFC enhance the cardiac baroreflex response.
Experimental Physiology | 2016
Luciana Baerg Kuntze; Nilson Carlos Ferreira-Junior; Davi Campos Lagatta; L.B.M. Resstel
What is the central question of this study? Does reversible synaptic inactivation by CoCl2 in the dorsal (DH) or ventral (VH) portions of the hippocampus have a modulatory effect on cardiovascular and respiratory responses evoked by chemoreflex activation in awake rats? What is the main finding and its importance? Using i.v. infusion of KCN to activate the peripheral chemoreflex before and after microinjection of CoCl2 into VH, we showed that the bradycardic response was increased, but not the pressor and tachypnoeic responses even if the tidal volume had been increased. Thus, VH but not DH may be involved in the modulation of the parasympathoexcitatory component of the peripheral chemoreflex.
Toxicology | 2018
Alexandre F. Cunha; Igor Simões A. Felippe; Nilson Carlos Ferreira-Junior; Leonardo B. M. Resstel; Daniela A.M. Guimarães; Vanessa Beijamini; Julian F. R. Paton; Karla N. Sampaio
Although it is well-established that severe poisoning by organophosphorus (OP) compounds strongly affects the cardiorespiratory system, the effects of sub-lethal exposure to these compounds on the neural control of cardiovascular function are poorly explored. The aim of this study was to evaluate the effects of acute sub-lethal exposure to chlorpyrifos (CPF), a commonly used OP insecticide, on three basic reflex mechanisms involved in blood pressure regulation, the peripheral chemoreflex, the baroreflex and the Bezold-Jarisch reflex. Adult male Wistar rats were injected intraperitoneally with a single dose of CPF (30 mg/kg) or saline (0.9%). 24 h after injections, cardiovascular reflexes were tested in awake rats. Potassium cyanide (KCN) and phenylbiguanide (PBG) were injected intravenously to activate the chemoreflex and the Bezold-Jarisch reflex, respectively. The baroreflex was activated by phenylephrine and sodium nitroprusside infusions. Blood samples were taken for measurements of butyrylcholinesterase (BChE) activity while acetylcholinesterase (AChE) activity was measured in brainstem samples. Animals treated with CPF presented signs of intoxication such as ataxia, tremor, lacrimation, salivation, tetany, urination and defecation. The hypertensive and the bradycardic responses of the chemoreflex as well as the hypotensive and bradycardic responses of the Bezold-Jarisch reflex were attenuated in CPF treated animals (P < 0.05). Concerning the baroreflex responses, CPF treatment reduced the bradycardia plateau, the range and the gain of the reflex (P < 0.05). Plasma BChE and brainstem AChE were both reduced significantly after CPF treatment (P < 0.05). Our results showed that acute sub-lethal exposure to CPF impairs the cardiovascular responses of homeostatic and defensive cardiovascular reflexes. These effects are associated with a marked inhibition of plasma BChE and brainstem AChE.
Experimental Physiology | 2017
Nilson Carlos Ferreira-Junior; Davi Campos Lagatta; Denise Resende Fabri; Fernando H. F. Alves; F.M.A. Corrêa; L.B.M. Resstel
What is the central question of this study? Classically, areas of the brainstem are involved in the cardiac baroreceptor reflex. However, forebrain areas, such as the hippocampus, may also modulate the cardiac baroreflex function. What is the main finding and its importance? According to the hippocampal subarea recruited dorsoventrally, the baroreflex function can be either facilitated or inhibited. These results are according to the new topographical division proposed for the hippocampus, i.e. it can be divided into functionally and anatomically different regions along its dorsoventral axis.
Pflügers Archiv: European Journal of Physiology | 2018
Davi Campos Lagatta; Luciana B. Kuntze; Nilson Carlos Ferreira-Junior; Leonardo B. M. Resstel
The ventral medial prefrontal cortex (vMPFC) facilitates the cardiac baroreflex response through N-methyl-d-aspartate (NMDA) receptor activation and nitric oxide (NO) formation by neuronal NO synthase (nNOS) and soluble guanylate cyclase (sGC) triggering. Glutamatergic transmission is modulated by the cannabinoid receptor type 1 (CB1) and transient receptor potential vanilloid type 1 (TRPV1) receptors, which may inhibit or stimulate glutamate release in the brain, respectively. Interestingly, vMPFC CB1 receptors decrease cardiac baroreflex responses, while TRPV1 channels facilitate them. Therefore, the hypothesis of the present study is that the vMPFC NMDA/NO pathway is regulated by both CB1 and TRPV1 receptors in the modulation of cardiac baroreflex activity. In order to test this assumption, we used male Wistar rats that had stainless steel guide cannulae bilaterally implanted in the vMPFC. Subsequently, a catheter was inserted into the femoral artery, for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. The increase in tachycardic and bradycardic responses observed after the microinjection of a CB1 receptors antagonist into the vMPFC was prevented by an NMDA antagonist as well as by the nNOS and sGC inhibition. NO extracellular scavenging also abolished these responses. These same pharmacological manipulations inhibited cardiac reflex enhancement induced by TRPV1 agonist injection into the area. Based on these results, we conclude that vMPFC CB1 and TRPV1 receptors inhibit or facilitate the cardiac baroreflex activity by stimulating or blocking the NMDA activation and NO synthesis.