Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Martínez-Canarias is active.

Publication


Featured researches published by Susana Martínez-Canarias.


Clinical Cancer Research | 2012

Inhibition of Collagen Receptor Discoidin Domain Receptor-1 (DDR1) Reduces Cell Survival, Homing, and Colonization in Lung Cancer Bone Metastasis

Karmele Valencia; Cristina Ormazábal; Carolina Zandueta; Diego Luis-Ravelo; Iker Antón; Maria J. Pajares; Jackeline Agorreta; Luis M. Montuenga; Susana Martínez-Canarias; Birgit Leitinger; Fernando Lecanda

Purpose: We investigated the role of the collagen-binding receptor discoidin domain receptor-1 (DDR1) in the initiation and development of bone metastasis. Experimental Design: We conducted immunohistochemical analyses in a cohort of 83 lung cancer specimens and examined phosphorylation status in a panel of human lung cancer cell lines. Adhesion, chemotaxis, invasiveness, metalloproteolytic, osteoclastogenic, and apoptotic assays were conducted in DDR1-silenced cells. In vivo, metastatic osseous homing and colonization were assessed in a murine model of metastasis. Results: DDR1 was expressed in a panel of human lung cancer cell lines, and high DDR1 levels in human lung tumors were associated with poor survival. Knockdown (shDDR1) cells displayed unaltered growth kinetics in vitro and in vivo. In contrast, shDDR1 cells showed reduced invasiveness in collagen matrices and increased apoptosis in basal conditions and induced apoptosis in vitro. More importantly, conditioned media of DDR1-knockdown cells decreased osteoclastogenic activity in vitro. Consequently, in a model of tumor metastasis to bone, lack of DDR1 showed decreased metastatic activity associated with reduced tumor burden and osteolytic lesions. These effects were consistent with a substantial reduction in the number of cells reaching the bone compartment. Moreover, intratibial injection of shDDR1 cells significantly decreased bone tumor burden, suggesting impaired colonization ability that was highly dependent on the bone microenvironment. Conclusions: Disruption of DDR1 hampers tumor cell survival, leading to impaired early tumor–bone engagement during skeletal homing. Furthermore, inhibition of DDR1 crucially alters bone colonization. We suggest that DDR1 represents a novel therapeutic target involved in bone metastasis. Clin Cancer Res; 18(4); 969–80. ©2012 AACR.


Molecular Oncology | 2014

miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization

Karmele Valencia; Diego Luis-Ravelo; Nicolas Bovy; Iker Antón; Susana Martínez-Canarias; Carolina Zandueta; Cristina Ormazábal; Ingrid Struman; Sébastien Tabruyn; Vera Rebmann; J. de las Rivas; Elisabet Guruceaga; Eva Bandrés; Fernando Lecanda

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor‐intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome‐like vesicles (ELV). Yet the functional relevance of the transference of tumor‐derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown.


American Journal of Respiratory and Critical Care Medicine | 2012

Receptor of Activated Protein C Promotes Metastasis and Correlates with Clinical Outcome in Lung Adenocarcinoma

Iker Antón; Eva Molina; Diego Luis-Ravelo; Carolina Zandueta; Karmele Valencia; Cristina Ormazábal; Susana Martínez-Canarias; Naiara Perurena; Maria J. Pajares; Jackeline Agorreta; Luis M. Montuenga; Victor Segura; Ignacio I. Wistuba; Javier De Las Rivas; José Hermida; Fernando Lecanda

RATIONALE Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. OBJECTIVES To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. METHODS Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. MEASUREMENTS AND MAIN RESULTS The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. CONCLUSIONS EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.


Bone | 2013

miR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis

Karmele Valencia; Marta Martín-Fernández; Carolina Zandueta; Cristina Ormazábal; Susana Martínez-Canarias; Eva Bandrés; Concepción de la Piedra; Fernando Lecanda

Recent evidence suggests that miRNAs could be used as serum markers in a variety of normal and pathological conditions. In this study, we aimed to identify novel miRNAs associated with skeletal metastatic disease in a preclinical model of lung cancer bone metastasis. We assessed the validity of these miRNAs as reliable serum biochemical markers to monitor the extent of disease and response to treatment in comparison to imaging techniques and standard biochemical markers of bone turnover. Using a murine model of human lung cancer bone metastasis after zoledronic acid (ZA) treatment, PINP (procollagen I amino-terminal propeptide) was the only marker that exhibited a strong correlation with osteolytic lesions and tumor burden at early and late stages of bone colonization. In contrast, BGP (osteocalcin) and CTX (carboxyterminal telopeptide) demonstrated a strong correlation only at late stages. We performed qPCR based screening of a panel of 380 human miRNAs and quantified bone metastatic burden using micro-CT scans, X-rays and bioluminescence imaging. Interestingly, levels of miR-326 strongly associated with tumor burden and PINP in vehicle-treated animals, whereas no association was found in ZA-treated animals. Only miR-193 was associated with biochemical markers PINP, BGP and CTX in ZA-treated animals. Consistently, miR-326 and PINP demonstrated a strong correlation with tumor burden. Our findings, taken together, indicate that miR-326 could potentially serve as a novel biochemical marker for monitoring bone metastatic progression.


Oncogene | 2014

A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer

Diego Luis-Ravelo; Iker Antón; Carolina Zandueta; Karmele Valencia; Cristina Ormazábal; Susana Martínez-Canarias; Elisabet Guruceaga; Naiara Perurena; Silvestre Vicent; De Las Rivas J; Fernando Lecanda

Bone metastasis of lung adenocarcinoma (AC) is a frequent complication of advanced disease. The purpose of this study was to identify key mediators conferring robust prometastatic activity with clinical significance. We isolated highly metastatic subpopulations (HMS) using a previously described in vivo model of lung AC bone metastasis. We performed transcriptomic profiling of HMS and stringent bioinformatics filtering. Functional validation was assessed by overexpression and lentiviral silencing of single, double and triple combination in vivo and in vitro. We identified HDAC4, PITX1 and ROBO1 that decreased bone metastatic ability after their simultaneous abrogation. These effects were solely linked to defects in osseous colonization. The molecular mechanisms related to bone colonization were mediated by non-cell autonomous effects that include the following: (1) a marked decrease in osteoclastogenic activity in vitro and in vivo, an effect associated with reduced pro-osteoclastogenic cytokines IL-11 and PTHrP expression levels, as well as decreased in vitro expression of stromal rankl in conditions mimicking tumor–stromal interactions; (2) an abrogated response to TGF-β signaling by decreased phosphorylation and levels of Smad2/3 in tumor cells and (3) an impaired metalloproteolytic activity in vitro. Interestingly, coexpression of HDAC4 and PITX1 conferred high prometastatic activity in vivo. Further, levels of both genes correlated with patients at higher risk of metastasis in a clinical lung AC data set and with a poorer clinical outcome. These findings provide functional and clinical evidence that this metastatic subset is an important determinant of osseous colonization. These data suggest novel therapeutic targets to effectively block lung AC bone metastasis.


Clinical & Experimental Metastasis | 2011

Tumor-stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models.

Diego Luis-Ravelo; Iker Antón; Silvestre Vicent; Igor Hernández; Karmele Valencia; Carolina Zandueta; Susana Martínez-Canarias; Alfonso Gurpide; Fernando Lecanda

Lung cancer comprises a large variety of histological subtypes with a frequent proclivity to form bone metastasis; a condition associated with dismal prognosis. To identify common mechanisms in the development of osteolytic metastasis, we systematically screened a battery of lung cancer cell lines and developed three models of non-small cell lung cancer (NSCLC) with a common proclivity to form osseous lesions, which represented different histological subtypes. Comparative analysis revealed different incidences and latency times. These differences were correlated with cell-type-specific secretion of osteoclastogenic factors, including macrophage inflammatory protein-1α, interleukin-8 and parathyroid hormone-related protein, some of which were exacerbated in conditions that mimicked tumor–stroma interactions. In addition, a distinct signature of matrix metalloproteinase (MMP) activity derived from reciprocal tumor–stroma interactions was detected for each tumor cell line. Thus, these results suggest subtle differences in the mechanisms of bone colonization for each lung cancer subtype, but share, although each to a different degree, dual MMP and osteoclastogenic activities that are differentially enhanced upon tumor–stromal interactions.


Nature Communications | 2017

An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

Adrian Vallejo; Naiara Perurena; Elisabet Guruceaga; Pawel K. Mazur; Susana Martínez-Canarias; Carolina Zandueta; Karmele Valencia; Andrea Arricibita; Dana Gwinn; Leanne C. Sayles; Chen-Hua Chuang; Laura Guembe; Peter Bailey; David K. Chang; Andrew V. Biankin; Mariano Ponz-Sarvisé; Jesper B. Andersen; Purvesh Khatri; Aline Bozec; E. Alejandro Sweet-Cordero; Julien Sage; Fernando Lecanda; Silve Vicent

KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.


The Journal of Pathology | 2016

Matrix‐Gla protein promotes osteosarcoma lung metastasis and associates with poor prognosis

Carolina Zandueta; Cristina Ormazábal; Naiara Perurena; Susana Martínez-Canarias; Marta Zalacain; Mikel San Julián; Agamemnon E. Grigoriadis; Karmele Valencia; Francisco J. Campos-Laborie; Javier De Las Rivas; Silvestre Vicent; Ana Patiño-García; Fernando Lecanda

Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo‐naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix‐Gla protein (MGP), a non‐collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans‐endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFβ‐induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright


Journal of Hematology & Oncology | 2017

EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth.

Naiara Perurena; Carolina Zandueta; Susana Martínez-Canarias; Haritz Moreno; Silvestre Vicent; Ana S. Almeida; Elisabet Guruceaga; Roger R. Gomis; Marta Santisteban; Mikala Egeblad; José Hermida; Fernando Lecanda

BackgroundActivated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated.MethodsTranscriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis.ResultsAnalysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis.ConclusionsEPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients.


Oncotarget | 2015

Sphere-derived tumor cells exhibit impaired metastasis by a host-mediated quiescent phenotype

Anne-Marie Bleau; Carolina Zandueta; Miriam Redrado; Susana Martínez-Canarias; Leyre Larzabal; Luis M. Montuenga; Alfonso Calvo; Fernando Lecanda

The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications.

Collaboration


Dive into the Susana Martínez-Canarias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Lecanda

Chartered Institute of Management Accountants

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge