Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Real is active.

Publication


Featured researches published by Fernando Real.


DNA Research | 2013

The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

Fernando Real; Ramon Vidal; Marcelo Falsarella Carazzolle; Jorge Maurício Costa Mondego; Gustavo G.L. Costa; Roberto H. Herai; Martin Würtele; Lucas Miguel de Carvalho; Renata C. Ferreira; Renato A. Mortara; Clara Lúcia Barbiéri; Piotr A. Mieczkowski; José Franco da Silveira; Marcelo R. S. Briones; Gonçalo Amarante Guimarães Pereira; Diana Bahia

We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.


PLOS Neglected Tropical Diseases | 2012

The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging.

Fernando Real; Renato A. Mortara

An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.


Cellular Microbiology | 2014

Cell-to-cell transfer of Leishmania amazonensis amastigotes is mediated by immunomodulatory LAMP-rich parasitophorous extrusions

Fernando Real; Pilar Veras Florentino; Luiza Campos Reis; Eduardo Milton Ramos-Sanchez; Patrícia Sampaio Tavares Veras; Hiro Goto; Renato A. Mortara

The last step of Leishmania intracellular life cycle is the egress of amastigotes from the host cell and their uptake by adjacent cells. Using multidimensional live imaging of long‐term‐infected macrophage cultures we observed that Leishmania amazonensis amastigotes were transferred from cell to cell when the donor host macrophage delivers warning signs of imminent apoptosis. They were extruded from the macrophage within zeiotic structures (membrane blebs, an apoptotic feature) rich in phagolysosomal membrane components. The extrusions containing amastigotes were selectively internalized by vicinal macrophages and the rescued amastigotes remain viable in recipient macrophages. Host cell apoptosis induced by micro‐irradiation of infected macrophage nuclei promoted amastigotes extrusion, which were rescued by non‐irradiated vicinal macrophages. Using amastigotes isolated from LAMP1/LAMP2 knockout fibroblasts, we observed that the presence of these lysosomal components on amastigotes increases interleukin 10 production. Enclosed within host cell membranes, amastigotes can be transferred from cell to cell without full exposure to the extracellular milieu, what represents an important strategy developed by the parasite to evade host immune system.


PLOS Neglected Tropical Diseases | 2010

Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: live imaging of coinfected macrophages.

Fernando Real; Renato A. Mortara; Michel Rabinovitch

Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes - which were destroyed - differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation – a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.


Cellular Microbiology | 2016

Lysosome biogenesis/scattering increases host cell susceptibility to invasion by Trypanosoma cruzi metacyclic forms and resistance to tissue culture trypomastigotes

Cristian Cortez; Fernando Real; Nobuko Yoshida

A fundamental question to be clarified concerning the host cell invasion by Trypanosoma cruzi is whether the insect‐borne and mammalian‐stage parasites use similar mechanisms for invasion. To address that question, we analysed the cell invasion capacity of metacyclic trypomastigotes (MT) and tissue culture trypomastigotes (TCT) under diverse conditions. Incubation of parasites for 1 h with HeLa cells in nutrient‐deprived medium, a condition that triggered lysosome biogenesis and scattering, increased MT invasion and reduced TCT entry into cells. Sucrose‐induced lysosome biogenesis increased HeLa cell susceptibility to MT and resistance to TCT. Treatment of cells with rapamycin, which inhibits mammalian target of rapamycin (mTOR), induced perinuclear lysosome accumulation and reduced MT invasion while augmenting TCT invasion. Metacylic trypomastigotes, but not TCT, induced mTOR dephosphorylation and the nuclear translocation of transcription factor EB (TFEB), a mTOR‐associated lysosome biogenesis regulator. Lysosome biogenesis/scattering was stimulated upon HeLa cell interaction with MT but not with TCT. Recently, internalized MT, but not TCT, were surrounded by colocalized lysosome marker LAMP2 and mTOR. The recombinant gp82 protein, the MT‐specific surface molecule that mediates invasion, induced mTOR dephosphorylation, nuclear TFEB translocation and lysosome biogenesis/scattering. Taken together, our data clearly indicate that MT invasion is mainly lysosome‐dependent, whereas TCT entry is predominantly lysosome‐independent.


PLOS Neglected Tropical Diseases | 2017

Cytokines and microbicidal molecules regulated by IL-32 in THP-1-derived human macrophages infected with New World Leishmania species

J.C. Dos Santos; Bas Heinhuis; Rodrigo Saar Gomes; M.S.M.A. Damen; Fernando Real; Renato A. Mortara; S.T. Keating; Charles A. Dinarello; Leo A. B. Joosten; Fátima Ribeiro-Dias

Background Interleukin-32 (IL-32) is expressed in lesions of patients with American Tegumentary Leishmaniasis (ATL), but its precise role in the disease remains unknown. Methodology/Principal findings In the present study, silencing and overexpression of IL-32 was performed in THP-1-derived macrophages infected with Leishmania (Viannia) braziliensis or L. (Leishmania) amazonensis to investigate the role of IL-32 in infection. We report that Leishmania species induces IL-32γ, and show that intracellular IL-32γ protein production is dependent on endogenous TNFα. Silencing or overexpression of IL-32 demonstrated that this cytokine is closely related to TNFα and IL-8. Remarkably, the infection index was augmented in the absence of IL-32 and decreased in cells overexpressing this cytokine. Mechanistically, these effects can be explained by nitric oxide cathelicidin and β-defensin 2 production regulated by IL-32. Conclusions Thus, endogenous IL-32 is a crucial cytokine involved in the host defense against Leishmania parasites.


Infection and Immunity | 2016

Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis

Carina Carraro Pessoa; Éden Ramalho Ferreira; Ethel Bayer-Santos; Michel Rabinovitch; Renato A. Mortara; Fernando Real

ABSTRACT The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.


FEBS Open Bio | 2016

AC-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model

Aline N. Rabaça; Denise C. Arruda; Carlos R. Figueiredo; Mariana H. Massaoka; Camyla F. Farias; Dayane Batista Tada; Vera Susana Carneiro Maia; Pedro Ismael da Silva Junior; Natalia Girola; Fernando Real; Renato A. Mortara; Luciano Polonelli; Luiz R. Travassos

Antibody‐derived peptides modulate functions of the immune system and are a source of anti‐infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity‐determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC‐1001 displays antimetastatic activities using B16F10‐Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC‐1001 H3 bound to both G‐ and F‐actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR‐derived peptides.


Antimicrobial Agents and Chemotherapy | 2015

Cyclopalladated compound 7a induces apoptosis- and autophagy-like mechanisms in Paracoccidioides and is a candidate for paracoccidioidomycosis treatment

Denise C. Arruda; Alisson L. Matsuo; Luiz S. Silva; Fernando Real; Natanael P. Leitão; Jhon H. S. Pires; Antonio Carlos Fávero Caires; Daniel M. Garcia; Fernanda F. M. Cunha; Rosana Puccia; Larissa V. G. Longo

ABSTRACT Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 μg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses.


Microbes and Infection | 2014

Lysosomal integral membrane protein 2 (LIMP-2) restricts the invasion of Trypanosoma cruzi extracellular amastigotes through the activity of the lysosomal enzyme β-glucocerebrosidase.

Viviane Martinelli Gonçalves; Vânia D'Almeida; Karen Barbosa Müller; Fernando Real; Renato A. Mortara

Lysosomal integral membrane protein 2 (LIMP-2, SCARB2) is directly linked to β-glucocerebrosidase enzyme (βGC) and mediates the transport of this enzyme from the Golgi complex to lysosomes. Active βGC cleaves the β-glycosidic linkages of glucosylceramide, an intermediate in the metabolism of sphingoglycolipids, generating ceramide. In this study we used mouse embryonic fibroblasts (MEFs) deficient for LIMP-2 and observed that these cells were more susceptible to infection by extracellular amastigotes of the protozoan parasite Trypanosoma cruzi when compared to wild-type (WT) fibroblasts. The absence of LIMP-2 decreases the activity of βGC measured in fibroblast extracts. Replacement of βGC enzyme in LIMP-2 deficient fibroblasts restores the infectivity indices to those of WT cells in T. cruzi invasion assays. Considering the participation of βGC in the production of host cell ceramide, we propose that T. cruzi extracellular amastigotes are more invasive to cells deficient in this membrane component. These results contribute to our understanding of the role of host cell lysosomal components in T. cruzi invasion.

Collaboration


Dive into the Fernando Real's collaboration.

Top Co-Authors

Avatar

Renato A. Mortara

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Denise C. Arruda

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Michel Rabinovitch

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Aline N. Rabaça

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Alisson L. Matsuo

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camyla F. Farias

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Carina Carraro Pessoa

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Carlos R. Figueiredo

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge