Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferran Burgaya is active.

Publication


Featured researches published by Ferran Burgaya.


The Journal of Neuroscience | 1999

Thyroid hormone regulates reelin and dab1 expression during brain development

Manuel Alvarez-Dolado; Mónica Ruiz; José Antonio del Río; Soledad Alcántara; Ferran Burgaya; Michael Sheldon; Kazunori Nakajima; Juan Bernal; Brian W. Howell; Tom Curran; Eduardo Soriano; Alberto Muñoz

The reelin and dab1 genes are necessary for appropriate neuronal migration and lamination during brain development. Since these processes are controlled by thyroid hormone, we studied the effect of thyroid hormone deprivation and administration on the expression of reelin anddab1. As shown by Northern analysis, in situ hybridization, and immunohistochemistry studies, hypothyroid rats expressed decreased levels of reelinRNA and protein during the perinatal period [embryonic day 18 (E18) and postnatal day 0 (P0)]. The effect was evident in Cajal-Retzius cells of cortex layer I, as well as in layers V/VI, hippocampus, and granular neurons of the cerebellum. At later ages, however, Reelin was more abundant in the cortex, hippocampus, cerebellum, and olfactory bulb of hypothyroid rats (P5), and no differences were detected at P15. Conversely, Dab1 levels were higher at P0, and lower at P5 in hypothyroid animals. In line with these results, reelin RNA and protein levels were higher in cultured hippocampal slices from P0 control rats compared to those from hypothyroid animals. Significantly, thyroid-dependent regulation of reelin anddab1 was confirmed in vivo and in vitro by hormone treatment of hypothyroid rats and organotypic cultures, respectively. In both cases, thyroid hormone led to an increase in reelin expression. Our data suggest that the effects of thyroid hormone on neuronal migration may be in part mediated through the control of reelin anddab1 expression during brain ontogenesis.


Molecular and Cellular Neuroscience | 2004

Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions.

Ana Mingorance; Xavier Fontana; Marta Solé; Ferran Burgaya; Jesús M. Ureña; Felicia Y.H. Teng; Bor Luen Tang; David M. Hunt; Patrick N. Anderson; John R. Bethea; Martin E. Schwab; Eduardo Soriano; José Antonio del Río

Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.


Journal of Neuroscience Research | 2007

Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors

Alejandra Rangel; Ferran Burgaya; Rosalina Gavín; Eduardo Soriano; Adriano Aguzzi; José Antonio del Río

Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI‐anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA‐mediated neurotransmission, parallel studies describe normal behavior of PrPc‐mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc‐deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA‐treated mice. PrPc‐deficient mice showed increased sensitivity to KA‐induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell‐specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc‐expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real‐time RT‐PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA‐induced neurotoxicity, probably by regulating the expression of KA receptor subunits.


Archive | 1990

Growth, Degrowth and Regeneration as Developmental Phenomena in Adult Freshwater Planarians

Jaume Baguñà; Rafael Romero; Emili Saló; Joan Collet; Carme Auladell; Maria Ribas; Marta Riutort; Jordi Garcia-Fernàndez; Ferran Burgaya; David Bueno

Freshwater planarians are Platyhelminthes belonging to the class Turbellaria, order Seriata, suborder Tricladida, infra-order Paludicola. The term Tricladida (or triclads) refers to the three main branches into which their digestive system are divided; Paludicola means members are inhabitants of freshwater habitats. Freshwater planarians are the best known planarians due to there easy culture and ease of handling under laboratory conditions and, because they have been, and still are, the most widely used turbellarian in experimental research, particularly with regards to regeneration (see Bronsted, 1969, and Gremigni, 1988, for general references).


Journal of Neurochemistry | 2004

Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats

Elena Guillén-Gómez; Marta Calbet; Javier Casado; Luis de Lecea; Eduardo Soriano; Marçal Pastor-Anglada; Ferran Burgaya

Nucleoside transport processes regulate the levels of adenosine available to modulate neurotransmission, vascular tone and other physiological events. However, although equilibrative transporter transcripts or proteins have been mapped in the central nervous system of rats and humans, little is known about the presence and distribution of the complete family of nucleoside transporters in brain. In this study, we analysed the distribution of the transcript encoding the high affinity adenosine‐preferring concentrative transporter CNT2 in the rat central nervous system and compared it with that of the equilibrative transporter ENT1. Furthermore, we evaluated the changes in expression of these two transporters in a situation of increased extracellular levels of adenosine, such as sleep deprivation. CNT2 mRNA was widespread in rat brain, although most prevalent in the amygdala, the hippocampus, specific neocortical regions and the cerebellum. The distribution of CNT2 mRNA only partially overlapped that of ENT1. Most of the cells labelled were neurones. Total sleep deprivation dramatically diminished the amounts of CNT2 mRNA, whereas ENT1 mRNA remained unchanged. This specific decrease in CNT2 transcript suggests a new physiological role for the transporter in the modulation of extracellular adenosine levels and the sleep/wakefulness cycle.


Nature Communications | 2012

The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2.

Guillermo López-Doménech; Román Serrat; Serena Mirra; Salvatore D'Aniello; Ildiko Somorjai; Alba Abad; Nathalia Vitureira; Elena García-Arumí; Maria Teresa Alonso; Macarena Rodríguez-Prados; Ferran Burgaya; Antoni L. Andreu; Javier García-Sancho; Ramón Trullas; Jordi Garcia-Fernàndez; Eduardo Soriano

Brain function requires neuronal activity-dependent energy consumption. Neuronal energy supply is controlled by molecular mechanisms that regulate mitochondrial dynamics, including Kinesin motors and Mitofusins, Miro1-2 and Trak2 proteins. Here we show a new protein family that localizes to the mitochondria and controls mitochondrial dynamics. This family of proteins is encoded by an array of armadillo (Arm) repeat-containing genes located on the X chromosome. The Armcx cluster is unique to Eutherian mammals and evolved from a single ancestor gene (Armc10). We show that these genes are highly expressed in the developing and adult nervous system. Furthermore, we demonstrate that Armcx3 expression levels regulate mitochondrial dynamics and trafficking in neurons, and that Alex3 interacts with the Kinesin/Miro/Trak2 complex in a Ca(2+)-dependent manner. Our data provide evidence of a new Eutherian-specific family of mitochondrial proteins that controls mitochondrial dynamics and indicate that this key process is differentially regulated in the brain of higher vertebrates.


PLOS ONE | 2010

Podocalyxin Is a Novel Polysialylated Neural Adhesion Protein with Multiple Roles in Neural Development and Synapse Formation

Nathalia Vitureira; Rosa Andrés; Esther Pérez-Martínez; Albert Martínez; Ana Bribián; Juan Blasi; Shierley Chelliah; Guillermo López-Doménech; Fernando de Castro; Ferran Burgaya; Kelly M. McNagny; Eduardo Soriano

Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.


Bioscience Reports | 1989

Hepatic endothelial lipase activity in neonatal rat liver

Ferran Burgaya; Julia Peinado; Miquel Llobera; Ignasi Ramírez

Hepatic endothelial lipase (HEL) activity is as high in the neonatal (1-day old) rat liver as in adults. Most of the HEL activity is located at the capillaries since 75% of the total activity is released by heparin or collagenase perfusion. The residual activity (non-releasable) is located in hepatocytes and not in hemopoietic cells, which are the major cell type in neonatal liver. Per mg of protein, the HEL activity is 50% higher in neonatal than in adult hepatocytes. We suggest that neonatal hepatocytes have an increased capacity to synthesize and secrete HEL activity, so maintaining a high activity in the whole organ. it might contribute to the hepatic uptake of cholesterol from circulating lipoproteins, in a period in which endogenous cholesterol synthesis is known to be inhibited in the liver.


Neuroscience | 2006

Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus.

Raquel Otal; Ferran Burgaya; Jonas Frisén; Eduardo Soriano; Albert Martínez

Entorhinal and commissural/associational projections show a non-overlapping distribution in the hippocampus proper and the dentate gyrus. The expression of Ephrins and their Eph receptors in the developing hippocampus indicates that this family of axonal guidance molecules may modulate the formation of these connections. Here we focused on the role of the ephrin-A5 ligand in the development of the main hippocampal afferents. In situ hybridization showed that ephrin-A5 mRNA was detected mainly in the principal cells of the hippocampus proper and in the dentate gyrus throughout postnatal development. Immunocytochemical analyses revealed prominent expression of the EphA3 receptor, a putative receptor for ephrin-A5, in the main cells and the neuropil of the developing hippocampus. Tracing experiments in ephrin-A5(-/-) mice showed that commissural projections were transiently altered in the hippocampus proper at P5, but they were mistargeted throughout the postnatal development in the dentate gyrus. Immunocytochemistry with anti-calbindin antibodies revealed that the dentate mossy fiber projection was not altered in ephrin-A5(-/-) mice. Electron microscopy studies showed alterations in the density of synapses and spines in commissural/associational layers, but not in entorhinal layers, and in the mossy fibers in these animals. Taken together, these findings indicate that ephrin-A5 signaling is involved in the formation and maturation of synapses in the hippocampus.


The Journal of Neuroscience | 2009

The CREB/CREM Transcription Factors Negatively Regulate Early Synaptogenesis and Spontaneous Network Activity

Fernando Aguado; Carmen Díaz-Ruiz; Rosanna Parlato; Albert Martínez; Maria A. Carmona; Susanne C. Bleckmann; Jesús M. Ureña; Ferran Burgaya; José Antonio del Río; Günther Schütz; Eduardo Soriano

The family of CREB (cAMP response element-binding protein) transcription factors are involved in a variety of biological processes including the development and plasticity of the nervous system. In the maturing and adult brain, CREB genes are required for activity-dependent processes, including synaptogenesis, refinement of connections and long-term potentiation. Here, we use CREB1NescreCREM−/− (cAMP-responsive element modulator) mutants to investigate the role of these genes in stimulus-independent patterns of neural activity at early stages. We show that lack of CREB/CREM genes specifically in neural tissue leads to increased synaptogenesis and to a dramatic increase in the levels of spontaneous network activity at embryonic stages. Thus, the functions of CREB/CREM genes in neural activity differ in distinct periods of neural development.

Collaboration


Dive into the Ferran Burgaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge