Fikadu G. Tafesse
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fikadu G. Tafesse.
Journal of Biological Chemistry | 2006
Fikadu G. Tafesse; Philipp Ternes; Joost C. M. Holthuis
Sphingomyelin (SM)3 is a vital component of cellular membranes in organisms ranging from mammals to protozoa. Its production involves the enzymatic transfer of a phosphocholine head group fromphosphatidylcholine to ceramide, yielding diacylglycerol in the process. The enzyme catalyzing this reaction, SM synthase, thus occupies a central position in sphingolipid and glycerophospholipid metabolism and has considerable biological potential as a regulator of pro-apoptotic factor ceramide and mitogenic factor diacylglycerol. Recent identification of the enzyme uncovered a multiplicity of SM synthase genes in each organism where SM synthesis is known to occur. This has shed new light on the pathways, reaction mechanism, regulation, phylogenetic distribution, and biological significance of SM synthesis.
Journal of Biological Chemistry | 2007
Fikadu G. Tafesse; Klazien Huitema; Martin Hermansson; Seléne van der Poel; Joep van den Dikkenberg; Andreas Uphoff; Pentti Somerharju; Joost C. M. Holthuis
Sphingomyelin (SM) is a vital component of cellular membranes in organisms ranging from mammals to protozoa. Its production involves the transfer of phosphocholine from phosphatidylcholine to ceramide, yielding diacylglycerol in the process. The mammalian genome encodes two known SM synthase (SMS) isoforms, SMS1 and SMS2. However, the relative contributions of these enzymes to SM production in mammalian cells remained to be established. Here we show that SMS1 and SMS2 are co-expressed in a variety of cell types and function as the key Golgi- and plasma membrane-associated SM synthases in human cervical carcinoma HeLa cells, respectively. RNA interference-mediated depletion of either SMS1 or SMS2 caused a substantial decrease in SM production levels, an accumulation of ceramides, and a block in cell growth. Although SMS-depleted cells displayed a reduced SM content, external addition of SM did not restore growth. These results indicate that the biological role of SM synthases goes beyond formation of SM.
Journal of Cell Biology | 2009
Ana M. Vacaru; Fikadu G. Tafesse; Philipp Ternes; Vangelis Kondylis; Martin Hermansson; Jos F. Brouwers; Pentti Somerharju; Catherine Rabouille; Joost C. M. Holthuis
Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.
PLOS Pathogens | 2013
Karin Strijbis; Fikadu G. Tafesse; Gregory D. Fairn; Martin D. Witte; Stephanie K. Dougan; Nicki Watson; Eric Spooner; Alexandre Esteban; Valmik K. Vyas; Gerald R. Fink; Sergio Grinstein; Hidde L. Ploegh
Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Brutons Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.
Journal of Cell Science | 2014
Fikadu G. Tafesse; Ana M. Vacaru; Elleke Fenna Bosma; Martin Hermansson; Amrita Jain; Angelika Hilderink; Pentti Somerharju; Joost C. M. Holthuis
ABSTRACT Cells synthesize ceramides in the endoplasmic reticulum (ER) as precursors for sphingolipids to form an impermeable plasma membrane. As ceramides are engaged in apoptotic pathways, cells would need to monitor their levels closely to avoid killing themselves during sphingolipid biosynthesis. How this is accomplished remains to be established. Here we identify SMSr (SAMD8), an ER-resident ceramide phosphoethanolamine (CPE) synthase, as a suppressor of ceramide-mediated cell death. Disruption of SMSr catalytic activity causes a rise in ER ceramides and their mislocalization to mitochondria, triggering a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile &agr;-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels to prevent inappropriate cell death during sphingolipid biosynthesis.
Journal of Biological Chemistry | 2014
Fikadu G. Tafesse; Carla P. Guimaraes; Takeshi Maruyama; Jan E. Carette; Stephen Lory; Thijn R. Brummelkamp; Hidde L. Ploegh
Background: Bacterial toxins, including P. aeruginosa exotoxin A (PE), are valuable tools to dissect biological processes. Results: A genome-wide genetic screen identifies several novel host factors used by PE, including GPR107. Conclusion: Bacterial toxins can help identify novel host components involved in key intracellular trafficking steps. Significance: GPR107 may be a receptor that associates with G-proteins at the Golgi to regulate membrane transport. A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Fikadu G. Tafesse; Sumana Sanyal; Joseph Ashour; Carla P. Guimaraes; Martin Hermansson; Pentti Somerharju; Hidde L. Ploegh
Cells genetically deficient in sphingomyelin synthase-1 (SGMS1) or blocked in their synthesis pharmacologically through exposure to a serine palmitoyltransferase inhibitor (myriocin) show strongly reduced surface display of influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA). The transport of HA to the cell surface was assessed by accessibility of HA on intact cells to exogenously added trypsin and to HA-specific antibodies. Rates of de novo synthesis of viral proteins in wild-type and SGMS1-deficient cells were equivalent, and HA negotiated the intracellular trafficking pathway through the Golgi normally. We engineered a strain of influenza virus to allow site-specific labeling of HA and NA using sortase. Accessibility of both HA and NA to sortase was blocked in SGMS1-deficient cells and in cells exposed to myriocin, with a corresponding inhibition of the release of virus particles from infected cells. Generation of influenza virus particles thus critically relies on a functional sphingomyelin biosynthetic pathway, required to drive influenza viral glycoproteins into lipid domains of a composition compatible with virus budding and release.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Akhee S. Jahan; Maxime Lestra; Lee Kim Swee; Ying Fan; Mart Matthias Lamers; Fikadu G. Tafesse; Christopher S. Theile; Eric Spooner; Roberto Bruzzone; Hidde L. Ploegh; Sumana Sanyal
Significance We used an unbiased screening strategy to capture deubiquitylases that participate in T cell receptor signaling in primary cells under physiological settings. We identified ubiquitin-specific peptidase (Usp) 12 as a crucial component of TCR expression at the cell surface, and found supporting evidence for its function by creating an inducible genetic knockout in Jurkat cells. Using proximity-based labeling, we identified LAT and Trat1 as substrates of Usp12. In Usp12-deficient cells, both LAT and Trat1 are ubiquitin-modified and lysosomally degraded, thus down-regulating TCR surface expression. Our data define a role of Usp12 in the TCR signaling pathway for the first time, to our knowledge. These results underscore the importance of deubiquitylases in fine-tuning signaling cascades and provide a basis for the screening of small molecules to identify potential inhibitors. Posttranslational modifications are central to the spatial and temporal regulation of protein function. Among others, phosphorylation and ubiquitylation are known to regulate proximal T-cell receptor (TCR) signaling. Here we used a systematic and unbiased approach to uncover deubiquitylating enzymes (DUBs) that participate during TCR signaling in primary mouse T lymphocytes. Using a C-terminally modified vinyl methyl ester variant of ubiquitin (HA-Ub-VME), we captured DUBs that are differentially recruited to the cytosol on TCR activation. We identified ubiquitin-specific peptidase (Usp) 12 and Usp46, which had not been previously described in this pathway. Stimulation with anti-CD3 resulted in phosphorylation and time-dependent translocation of Usp12 from the nucleus to the cytosol. Usp12−/− Jurkat cells displayed defective NFκB, NFAT, and MAPK activities owing to attenuated surface expression of TCR, which were rescued on reconstitution of wild type Usp12. Proximity-based labeling with BirA-Usp12 revealed several TCR adaptor proteins acting as interactors in stimulated cells, of which LAT and Trat1 displayed reduced expression in Usp12−/− cells. We demonstrate that Usp12 deubiquitylates and prevents lysosomal degradation of LAT and Trat1 to maintain the proximal TCR complex for the duration of signaling. Our approach benefits from the use of activity-based probes in primary cells without any previous genome modification, and underscores the importance of ubiquitin-mediated regulation to refine signaling cascades.
Journal of Lipid Research | 2016
Matthijs Kol; Radhakrishnan Panatala; Mirjana Nordmann; Leoni Swart; Leonie van Suijlekom; Birol Cabukusta; Angelika Hilderink; Tanja Grabietz; John G. Mina; Pentti Somerharju; Sergei Korneev; Fikadu G. Tafesse; Joost C. M. Holthuis
SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes. This article has been withdrawn by the authors. See the withdrawal notice here: April 1 erratum jlr. M068692ERR.
PLOS Pathogens | 2015
Fikadu G. Tafesse; Ali Rashidfarrokhi; Florian I. Schmidt; Elizaveta Freinkman; Stephanie K. Dougan; Michael Dougan; Alexandre Esteban; Takeshi Maruyama; Karin Strijbis; Hidde L. Ploegh
The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.