Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filip Tack is active.

Publication


Featured researches published by Filip Tack.


Science of The Total Environment | 2009

Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review

G. Du Laing; Jörg Rinklebe; Bart Vandecasteele; Erik Meers; Filip Tack

This paper reviews the factors affecting trace metal behaviour in estuarine and riverine floodplain soils and sediments. Spatial occurrence of processes affecting metal mobility and availability in floodplains are largely determined by the topography. At the oxic-anoxic interface and in the anoxic layers of floodplain soils, especially redox-sensitive processes occur, which mainly result in the inclusion of metals in precipitates or the dissolution of metal-containing precipitates. Kinetics of these processes are of great importance for these soils as the location of the oxic-anoxic interface is subject to change due to fluctuating water table levels. Other important processes and factors affecting metal mobility in floodplain soils are adsorption/desorption processes, salinity, the presence of organic matter, sulphur and carbonates, pH and plant growth. Many authors report highly significant correlations between cation exchange capacity, clay or organic matter contents and metal contents in floodplain soils. Iron and manganese (hydr)oxides were found to be the main carriers for Cd, Zn and Ni under oxic conditions, whereas the organic fraction was most important for Cu. The mobility and availability of metals in a floodplain soil can be significantly reduced by the formation of metal sulphide precipitates under anoxic conditions. Ascending salinity in the flood water promotes metal desorption from the floodplain soil in the absence of sulphides, hence increases total metal concentrations in the water column. The net effect of the presence of organic matter can either be a decrease or an increase in metal mobility, whereas the presence of carbonates in calcareous floodplain soils or sediments constitutes an effective buffer against a pH decrease. Moreover, carbonates may also directly precipitate metals. Plants can affect the metal mobility in floodplain soils by oxidising their rhizosphere, taking up metals, excreting exudates and stimulating the activity of microbial symbionts in the rhizosphere.


International Journal of Environmental Analytical Chemistry | 1995

Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review

Filip Tack; Marc Verloo

Abstract Today it is generally recognized that the particular behaviour of trace metals in the environment is determined by their specific physicochemical forms rather than by their total concentration. Several chemical speciation and fractionation methods for heavy metal analysis in soils and sediments have been and are still being developed and applied. They primarily are intended to understand the particular environmental behaviour of metals, present in a variety of forms and in a variety of matrices. Analytical developments, modifications of existing methods, and recent new approaches are reviewed and discussed. Techniques used include chemical extractions, ion-exchange/gel chromatography, filtration, centrifugation and sieving, selective solvent extraction. Moreover, the application of these various techniques in different research fields over the last years is explored. The value and the limitations of speciation and fractionation techniques applied in specific experimental work is outlined. It is d...


Chemosphere | 2009

EDTA-assisted Pb phytoextraction

Saifullah; Erik Meers; Manzoor Qadir; P. de Caritat; Filip Tack; G. Du Laing; M.H. Zia

Pb is one of the most widespread and metal pollutants in soil. It is generally concentrated in surface layers with only a minor portion of the total metal found in soil solution. Phytoextraction has been proposed as an inexpensive, sustainable, in situ plant-based technology that makes use of natural hyperaccumulators as well as high biomass producing crops to help rehabilitate soils contaminated with heavy metals without destructive effects on soil properties. The success of phytoextraction is determined by the amount of biomass, concentration of heavy metals in plant, and bioavailable fraction of heavy metals in the rooting medium. In general, metal hyperaccumulators are low biomass, slow growing plant species that are highly metal specific. For some metals such as Pb, there are no hyperaccumulator plant species known to date. Although high biomass-yielding non-hyperaccumulator plants lack an inherent ability to accumulate unusual concentrations of Pb, soil application of chelating agents such as EDTA has been proposed to enhance the metal concentration in above-ground harvestable plant parts through enhancing the metal solubility and translocation from roots to shoots. Leaching of metals due to enhanced mobility during EDTA-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. Due to environmental persistence of EDTA in combination with its strong chelating abilities, the scientific community is moving away from the use of EDTA in phytoextraction and is turning to less aggressive alternative strategies such as the use of organic acids or more degradable APCAs (aminopolycarboxylic acids). We have therefore arrived at a point in phytoremediation research history in which we need to distance ourselves from EDTA as a proposed soil amendment within the context of phytoextraction. However, valuable lessons are to be learned from over a decade of EDTA-assisted phytoremediation research when considering the implementation of more degradable alternatives in assisted phytoextraction practices.


Water Air and Soil Pollution | 1998

Heavy Metal Fractionation and Extractability in Dredged Sediment Derived Surface Soils

Sp Singh; Filip Tack; Marc Verloo

The objective of this study was to characterise pollution with heavy metals in surface soils sampled at various dredged sediment disposal sites in the Flemish region (Belgium). The sites selected varied in the period since sediment disposal ceased and in current vegetation and land use.Total metal contents (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface soils varied widely. For some disposal sites Cd and Zn concentrations greatly exceeded reference values for clean soil. The distribution of the metals as determined by sequential extraction differed between elements, but was simular for all the soils. This suggested that metals in these sediment derived surface soils were accumulated and transformed in a similar way. Residual fractions were low compared to total contents (2 – 4% for Cd, 25% – 35% for Co, 7 – 18% for Mn, 4 – 22% for Zn, 12 – 41% for Ni, 11 – 42% for Pb, 20 – 45% for Cu, < 10% for Zn). High metal concentrations in the acid-extractable and reducible fractions may indicate pollution from anthropogenic sources.DTPA-extractable metals, which may be considered indicative of plant-available contents, were relatively high compared to the total contents. The relative extractability, expressed as the ratio of DTPA-extractable to total contents, decreased in the order Cd (38%) > Cu (28%) = Zn (26%) > Pb (13%) > Ni (10%) > Co (3%). Most of the sites studied would be of concern if they were used for agricultural activities. No trends in metal availability in the period following disposal were apparent from the data.


International Journal of Phytoremediation | 2004

Enhanced phytoextraction: in search of EDTA alternatives.

Erik Meers; M Hopgood; Els Lesage; Pieter Vervaeke; Filip Tack; Marc Verloo

ABSTRACT Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg−1 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg−1 soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.


Environmental Pollution | 1996

Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation.

Filip Tack; O.W.J.J. Callewaert; Marc Verloo

The solubility as a function of pH for metals in a reduced dredged sediment, subjected to different redox conditions, was studied in a laboratory experiment. The redox conditions imposed simulated (i) the undisturbed sediment (flooded), (ii) a dredged material stored in a confined pond (aerated once and then flooded), (iii) an upland stored dredged material (drained and dried), and (iv) an upland stored sediment subjected to tillage (drained, dried and mixed). Minor differences in the solubility as a function of pH were observed between the treatments after two weeks. After three months, the solubility of Cd, Cu, Pb and Zn increased strongly in the oxidized sediments. Leachability of Fe decreased, while Mn, Ni and Co were mostly unaffected. Both short- and long-term mobility of metals (except Fe) is expected to be lowest when a reduced sediment remains in reduced conditions. Studying the solubility as a function of pH may provide additional information on the chemical association of metals in sediments.


Science of The Total Environment | 1997

Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium)

Filip Tack; Marc Verloo; Luc Vanmechelen; E. Van Ranst

Abstract Baseline concentration levels of trace elements in the soils of Flanders (Belgium) were assessed as a function of clay and organic carbon contents. Outliers in the data were identified and rejected according to statistical criteria. Median trace element concentrations in mg/kg dry wt. were As 7, Cd 0.18, Co 0.05, Cr 24.6, Cu 9.6, Hg 0.17, Ni 3.5, Pb 21.5, Zn 34.5. Clay and organic carbon contents were found to be significant in predicting soil trace element contents in unpolluted soils. The coefficients of determination ranged from 0.07 (Hg) to 0.69 (Ni). Based on confidence intervals of the observations, trace element concentrations that have a known probability of being exceeded can be assessed as a function of clay and organic carbon content and used as soil quality reference values.


Environmental Toxicology and Chemistry | 2004

Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna

Karel A.C. De Schamphelaere; Flavio M. Vasconcelos; Filip Tack; Herbert E. Allen; Colin R. Janssen

The protective effect of dissolved organic matter (DOM) on metal toxicity to aquatic organisms has been reported by numerous authors. Bioavailability models such as the biotic ligand model (BLM) thus account for this factor to predict metal toxicity to aquatic organisms. Until now, however, few attempts have been made to assess the effect of the DOM source on metal speciation and toxicity and, accordingly, on BLM predictions. The aims of this study were to investigate to what extent DOMs differ in their ability to decrease acute copper toxicity to the cladoceran Daphnia magna and to evaluate if ultraviolet (UV) absorbance measurements may be a simple and effective method to incorporate DOM variability into the acute Cu-BLM for D. magna. Acute toxicity tests were carried out in artificial test water enriched with DOMs isolated from six locations in Europe and North America and in seven natural European surface waters. The acute Cu-BLM for D. magna was then used to estimate the copper complexing capacity of each DOM (expressed as % active fulvic acid, %AFA). A factor of 6 difference was observed between the lowest and the highest copper complexing capacity. A significant linear relationship was observed between the UV-absorbance coefficient at 350 nm (epsilon350) and the %AFA. Linking this relationship to the acute Cu-BLM resulted in a significant improvement of the predictive capacity of this BLM. Without accounting for this relationship, 90% of the predicted 48-h 50% effective concentrations (EC50) were within a factor of 2 of the observed EC50s; taking this relationship into account, 90% of the EC50s were predicted with an error of less than factor 1.3. The present study and other studies seem to indicate that UV absorbance may be a good measure of biologically and toxicologically relevant differences in copper binding behavior of DOM.


Environmental Toxicology and Chemistry | 2003

Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata

Karel A.C. De Schamphelaere; Flavio M. Vasconcelos; Dagobert G. Heijerick; Filip Tack; Katrien Delbeke; Herbert E. Allen; Colin R. Janssen

In this study, the combined effects of pH, water hardness, and dissolved organic carbon (DOC) concentration and type on the chronic (72-h) effect of copper on growth inhibition of the green alga Pseudokirchneriella subcapitata were investigated. Natural dissolved organic matter (DOM) was collected at three sites in Belgium and The Netherlands using reverse osmosis. A full central composite test design was used for one DOM and a subset of the full design for the two other DOMs. For a total number of 35 toxicity tests performed, 72-h effect concentration resulting in 10% growth inhibition (EbC10s) ranged from 14.2 to 175.9 micrograms Cu/L (factor 12) and 72-h EbC50s from 26.9 to 506.8 micrograms Cu/L (factor 20). Statistical analysis demonstrated that DOC concentration, DOM type, and pH had a significant effect on copper toxicity; hardness did not affect toxicity at the levels tested. In general, an increase in pH resulted in increased toxicity, whereas an increase of the DOC concentration resulted in decreased copper toxicity. When expressed as dissolved copper, significant differences of toxicity reduction capacity were noted across the three DOM types tested (up to factor 2.5). When expressed as Cu2+ activity, effect levels were only significantly affected by pH; linear relationships were observed between pH and the logarithm of the effect concentrations expressed as free copper ion activity, that is, log(EbC50Cu2+) and log(EbC10Cu2+): (1) log(EbC50Cu2+)= - 1.431 pH + 2.050 (r2 = 0.95), and (2) log(EbC10cu2+) = -1.140 pH -0.812 (r2 = 0.91). A copper toxicity model was developed by linking these equations to the WHAM V geochemical speciation model. This model predicted 97% of the EbC50dissolved and EbC10dissolved values within a factor of two of the observed values. Further validation using toxicity test results that were obtained previously with copper-spiked European surface waters demonstrated that for 81% of tested waters, effect concentrations were predicted within a factor of two of the observed. The developed model is considered to be an important step forward in accounting for copper bioavailability in natural systems.


Journal of Environmental Engineering and Landscape Management | 2010

Phytoremediation for heavy metal-contaminated soils combined with bioenergy production

Luc Van Ginneken; Erik Meers; Ruben Guisson; Ann Ruttens; Kathy Elst; Filip Tack; Jaco Vangronsveld; Ludo Diels; Winnie Dejonghe

Abstract In June 2007, a project started in Flanders (Belgium) in which we will apply phytoremediation to clean soils that are diffusely polluted with heavy metals. Uptake ranges of heavy metals by rape seed, maize and wheat will be enhanced by increasing the bioavailability of these heavy metals by the addition of biodegradable physico‐chemical agents and by stimulating the heavy‐metal uptake capacity of the microbial community in and around the plant. In addition, the harvested biomass crops will be converted into bioenergy by using different energy‐recovery‐techniques. The energy and heavy metal mass balances will be compared for four different energy‐recovery techniques (anaerobic digestion, incineration, gasification and production of biodiesel). The overall information obtained will result in an economic evaluation of the use of phytoremediation combined with bioenergy production for the remediation of sites which are diffusely polluted with heavy metals. In the present review we will first explain ...

Collaboration


Dive into the Filip Tack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge