Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evi Michels is active.

Publication


Featured researches published by Evi Michels.


Journal of Clinical Oncology | 2009

Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma

Isabelle Janoueix-Lerosey; Gudrun Schleiermacher; Evi Michels; Véronique Mosseri; Agnès Ribeiro; Delphine Lequin; Joëlle Vermeulen; Jérôme Couturier; Michel Peuchmaur; Alexander Valent; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Caroline Thomas; Valérie Combaret; Raphael Rousseau; Angelika Eggert; Jean Michon; Frank Speleman; Olivier Delattre

PURPOSE For a comprehensive overview of the genetic alterations of neuroblastoma, their association and clinical significance, we conducted a whole-genome DNA copy number analysis. PATIENTS AND METHODS A series of 493 neuroblastoma (NB) samples was investigated by array-based comparative genomic hybridization in two consecutive steps (224, then 269 patients). RESULTS Genomic analysis identified several types of profiles. Tumors presenting exclusively whole-chromosome copy number variations were associated with excellent survival. No disease-related death was observed in this group. In contrast, tumors with any type of segmental chromosome alterations characterized patients with a high risk of relapse. Patients with both numerical and segmental abnormalities clearly shared the higher risk of relapse of segmental-only patients. In a multivariate analysis, taking into account the genomic profile, but also previously described individual genetic and clinical markers with prognostic significance, the presence of segmental alterations with (HR, 7.3; 95% CI, 3.7 to 14.5; P < .001) or without MYCN amplification (HR, 4.5; 95% CI, 2.4 to 8.4; P < .001) was the strongest predictor of relapse; the other significant variables were age older than 18 months (HR, 1.8; 95% CI, 1.2 to 2.8; P = .004) and stage 4 (HR, 1.8; 95% CI, 1.2 to 2.7; P = .005). Finally, within tumors showing segmental alterations, stage 4, age, MYCN amplification, 1p and 11q deletions, and 1q gain were independent predictors of decreased overall survival. CONCLUSION The analysis of the overall genomic pattern, which probably unravels particular genomic instability mechanisms rather than the analysis of individual markers, is essential to predict relapse in NB patients. It adds critical prognostic information to conventional markers and should be included in future treatment stratification.


BMC Bioinformatics | 2005

arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays.

Björn Menten; Filip Pattyn; Katleen De Preter; Piet Robbrecht; Evi Michels; Karen Buysse; Geert Mortier; Anne De Paepe; Steven Van Vooren; Joris Vermeesch; Yves Moreau; Bart De Moor; Stefan Vermeulen; Frank Speleman; Jo Vandesompele

BackgroundThe availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment.ResultsWe have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser.ConclusionArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.


Genes, Chromosomes and Cancer | 2007

ArrayCGH-based classification of neuroblastoma into genomic subgroups†

Evi Michels; Jo Vandesompele; Katleen De Preter; Jasmien Hoebeeck; Joëlle Vermeulen; Alexander Schramm; Jan J. Molenaar; Björn Menten; Bárbara Marques; Raymond L. Stallings; Valérie Combaret; Christine Devalck; Anne De Paepe; Rogier Versteeg; Angelika Eggert; Genevieve Laureys; Nadine Van Roy; Frank Speleman

High‐resolution array comparative genomic hybridization (arrayCGH) profiling was performed on 75 primary tumors and 29 cell lines to gain further insight into the genetic heterogeneity of neuroblastoma and to refine genomic subclassification. Using a novel data‐mining strategy, three major and two minor genomic subclasses were delineated. Eighty‐three percent of tumors could be assigned to the three major genomic subclasses, corresponding to the three known clinically and biologically relevant subsets in neuroblastoma. The remaining subclasses represented (1) tumors with no/few copy number alterations or an atypical pattern of aberrations and (2) tumors with 11q13 amplification. Inspection of individual arrayCGH profiles showed that recurrent genomic imbalances were not exclusively associated with a specific subclass. Of particular notice were tumors with numerical imbalances typically observed in subtype 1 neuroblastoma, in association with genomic features of subtype 2A or 2B. A search for prognostically relevant genomic alterations disclosed 1q gain as a predictive marker for therapy failure within the group of subtype 2A and 2B tumors. In cell lines, a high incidence of 6q loss was observed, with a 3.87–5.32 Mb region of common loss within 6q25.1–6q25.2. Our study clearly illustrates the importance of genomic profiling in relation to tumor behavior in neuroblastoma. We propose that genome‐wide assessment of copy number alterations should ideally be included in the genetic workup of neuroblastoma. Further multicentric studies on large tumor series are warranted in order to improve therapeutic stratification in conjunction with other features such as age at diagnosis, tumor stage, and gene expression signatures.


Cancer Letters | 2009

Aberrant methylation of candidate tumor suppressor genes in neuroblastoma

Jasmien Hoebeeck; Evi Michels; Filip Pattyn; Valérie Combaret; Joëlle Vermeulen; Nurten Yigit; Claire Hoyoux; Genevieve Laureys; Anne De Paepe; Franki Speleman; Jo Vandesompele

CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers.


Genetics in Medicine | 2007

Detection of DNA copy number alterations in cancer by array comparative genomic hybridization

Evi Michels; Katleen De Preter; Nadine Van Roy; Franki Speleman

Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.


BMC Bioinformatics | 2006

methBLAST and methPrimerDB: web-tools for PCR based methylation analysis

Filip Pattyn; Jasmien Hoebeeck; Piet Robbrecht; Evi Michels; Anne De Paepe; Guy Bottu; David Coornaert; Robert Herzog; Frank Speleman; Jo Vandesompele

BackgroundDNA methylation plays an important role in development and tumorigenesis by epigenetic modification and silencing of critical genes. The development of PCR-based methylation assays on bisulphite modified DNA heralded a breakthrough in speed and sensitivity for gene methylation analysis. Despite this technological advancement, these approaches require a cumbersome gene by gene primer design and experimental validation. Bisulphite DNA modification results in sequence alterations (all unmethylated cytosines are converted into uracils) and a general sequence complexity reduction as cytosines become underrepresented. Consequently, standard BLAST sequence homology searches cannot be applied to search for specific methylation primers.ResultsTo address this problem we developed methBLAST, a sequence similarity search program, based on the original BLAST algorithm but querying in silico bisulphite modified genome sequences to evaluate oligonucleotide sequence similarities. Apart from the primer specificity analysis tool, we have also developed a public database termed methPrimerDB for the storage and retrieval of validated PCR based methylation assays. The web interface allows free public access to perform methBLAST searches or database queries and to submit user based information. Database records can be searched by gene symbol, nucleotide sequence, analytical method used, Entrez Gene or methPrimerDB identifier, and submitters name. Each record contains a link to Entrez Gene and PubMed to retrieve additional information on the gene, its genomic context and the article in which the methylation assay was described. To assure and maintain data integrity and accuracy, the database is linked to other reference databases. Currently, the database contains primer records for the most popular PCR-based methylation analysis methods to study human, mouse and rat epigenetic modifications. methPrimerDB and methBLAST are available at http://medgen.ugent.be/methprimerdb and http://medgen.ugent.be/methblast.ConclusionWe have developed two integrated and freely available web-tools for PCR based methylation analysis. methBLAST allows in silico assessment of primer specificity in PCR based methylation assays that can be stored in the methPrimerDB database, which provides a search portal for validated methylation assays.


International Journal of Cancer | 2007

High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors

Jasmien Hoebeeck; Evi Michels; Bj€orn Menten; Nadine Van Roy; Angelika Eggert; Alexander Schramm; Katleen De Preter; Nurten Yigit; Els De Smet; Anne De Paepe; Genevieve Laureys; Jo Vandesompele; Frank Speleman

The recurrent loss of 3p segments in neuroblastoma suggests the implication of 1 or more tumor suppressor genes but thus far few efforts have been made to pinpoint their detailed chromosomal position. To achieve this goal, array‐based comparative genomic hybridization was performed on a panel of 23 neuroblastoma cell lines and 75 primary tumors using a tiling‐path bacterial artificial chromosome array for chromosome 3p. A total of 45 chromosome 3 losses were detected, including whole chromosome losses, large terminal deletions and interstitial deletions. The latter, observed in cell lines as well as a number of distal deletions detected in primary tumors, allowed us to demarcate 3 minimal regions of loss of 3.6 Mb [3p21.31‐p21.2, shortest regions of overlap (SRO)1], 1.4 Mb (3p22.3‐3p22.2, SRO2) and 3.8 Mb (3p25.3‐p25.1, SRO3) in size. The present data significantly extend previous findings and now firmly establish critical regions on 3p implicated in neuroblastoma. Interestingly, the 2 proximal regions coincide with previously defined SROs on 3p21.3 in more frequent tumors including lung and breast cancer. As such, similar tumor suppressor genes may play a critical role in development or progression of a variety of neoplasms, including neuroblastoma.


Cytogenetic and Genome Research | 2006

Genome wide measurement of DNA copy number changes in neuroblastoma: dissecting amplicons and mapping losses, gains and breakpoints

Evi Michels; J Vandesompele; Jasmien Hoebeeck; Björn Menten; K. De Preter; Genevieve Laureys; N. Van Roy; F. Speleman

In the past few years high throughput methods for assessment of DNA copy number alterations have witnessed rapid progress. Both ‘in house’ developed BAC, cDNA, oligonucleotide and commercial arrays are now available and widely applied in the study of the human genome, particularly in the context of disease. Cancer cells are known to exhibit DNA losses, gains and amplifications affecting tumor suppressor genes and proto-oncogenes. Moreover, these patterns of genomic imbalances may be associated with particular tumor types or subtypes and may have prognostic value. Here we summarize recent array CGH findings in neuroblastoma, a pediatric tumor of the sympathetic nervous system. A total of 176 primary tumors and 53 cell lines have been analyzed on different platforms. Through these studies the genomic content and boundaries of deletions, gains and amplifications were characterized with unprecedented accuracy. Furthermore, in conjunction with cytogenetic findings, array CGH allows the mapping of breakpoints of unbalanced translocations at a very high resolution.


International Journal of Cancer | 2007

Identification of 2 putative critical segments of 17q gain in neuroblastoma through integrative genomics

Jo Vandesompele; Evi Michels; Katleen De Preter; Björn Menten; Alexander Schramm; Angelika Eggert; Peter F. Ambros; Valérie Combaret; Nadine Francotte; Francesca Antonacci; Anne De Paepe; Genevieve Laureys; Franki Speleman; Nadine Van Roy

Partial gain of chromosome arm 17q is the most frequent genetic change in neuroblastoma (NB) and constitutes the strongest independent genetic factor for adverse prognosis. It is assumed that 1 or more genes on 17q contribute to NB pathogenesis by a gene dosage effect. In the present study, we applied chromosome 17 tiling path BAC arrays on a panel of 69 primary tumors and 28 NB cell lines in order to reduce the current smallest region of gain and facilitate identification of candidate dosage sensitive genes. In all tumors and cell lines with 17q gain, large distal segments were consistently present in extra copies and no interstitial gains were observed. In addition to these large regions of distal gain with breakpoints proximal to coordinate 44.3 Mb (17q21.32), smaller regions of gain (distal to coordinate 60 Mb at 17q24.1) were found superimposed on the larger region in a minority of cases. Positional gene enrichment analysis for 17q genes overexpressed in NB showed that dosage sensitive NB oncogenes are most likely located in the gained region immediately distal to the most distal breakpoint of the 2 breakpoint regions. Interestingly, comparison of gene expression profiles between primary tumors and normal fetal adrenal neuroblasts revealed 2 gene clusters on chromosome 17q that are overexpressed in NB, i.e. a region on 17q21.32 immediately distal to the most distal breakpoint (in cases with single regions of gain) and 17q24.1, a region coinciding with breakpoints leading to superimposed gain.


Cancer Letters | 2008

Low-cost dedicated mini-arrays for high-throughput analysis of DNA copy-number alterations in neuroblastoma

Katleen De Preter; Björn Menten; Sara De Brouwer; Candy Kumps; Evi Michels; Nadine Van Roy; Jo Vandesompele; Franki Speleman

ArrayCGH is commonly used for high-resolution detection of copy-number alterations in tumours, allowing identification of chromosomal aberrations with prognostic or diagnostic relevance. Currently available arrayCGH platforms are still very expensive for analysis of large sets of samples. For this purpose, we have constructed a dedicated mini-array that is enriched for BAC/PAC clones in the prognostic important regions for neuroblastoma and that only covers a small area on the slide, allowing down-scaling of the labelling and hybridisation reagents and hence reducing the price. The mini-arrays were validated on neuroblastoma samples and comparison with high-resolution whole-genome arrayCGH data yielded complete concordant results.

Collaboration


Dive into the Evi Michels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Menten

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge