Filippo Cardano
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Filippo Cardano.
Applied Optics | 2012
Filippo Cardano; Ebrahim Karimi; Sergei Slussarenko; Lorenzo Marrucci; Corrado de Lisio; Enrico Santamato
We describe the polarization topology of the vector beams emerging from a patterned birefringent liquid crystal plate with a topological charge q at its center (q-plate). The polarization topological structures for different q-plates and different input polarization states have been studied experimentally by measuring the Stokes parameters point-by-point in the beam transverse plane. Furthermore, we used a tuned q=1/2-plate to generate cylindrical vector beams with radial or azimuthal polarizations, with the possibility of switching dynamically between these two cases by simply changing the linear polarization of the input beam.
Science Advances | 2015
Filippo Cardano; Francesco Massa; Hammam Qassim; Ebrahim Karimi; Sergei Slussarenko; Domenico Paparo; Corrado de Lisio; Fabio Sciarrino; Enrico Santamato; Robert W. Boyd; Lorenzo Marrucci
A discrete quantum walk occurs in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.
Nature Communications | 2017
Filippo Cardano; Alessio D'Errico; Alexandre Dauphin; Maria Maffei; Bruno Piccirillo; Corrado de Lisio; Guido de Filippis; V. Cataudella; Enrico Santamato; Lorenzo Marrucci; Maciej Lewenstein; Pietro Massignan
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.
Nature Communications | 2016
Filippo Cardano; Maria Maffei; Francesco Massa; Bruno Piccirillo; Corrado de Lisio; Giulio De Filippis; V. Cataudella; Enrico Santamato; Lorenzo Marrucci
Many phenomena in solid-state physics can be understood in terms of their topological properties [1, 2]. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena [3–6]. Here we report the realization of a photonic quantum walk showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional periodic systems, as in the SuSchrieffer-Heeger model of polyacetylene [7]. We find that the probability distribution moments of the walker position after many steps behave differently in the two topological phases and can be used as direct indicators of the quantum transition: while varying a control parameter, these moments exhibit a slope discontinuity at the transition point, and remain constant in the non-trivial phase. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer new general instruments for investigating quantum transitions in such complex systems.Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems.
Scientific Reports | 2013
Vincenzo D'Ambrosio; Filippo Cardano; Ebrahim Karimi; Eleonora Nagali; Enrico Santamato; Lorenzo Marrucci; Fabio Sciarrino
In quantum information, complementarity of quantum mechanical observables plays a key role. The eigenstates of two complementary observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a “qusix”), encoded exploiting polarization and orbital angular momentum of photons. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution.
Scientific Reports | 2017
Jijil Jj Nivas; Filippo Cardano; Zhenming Song; Andrea Rubano; R. Fittipaldi; A. Vecchione; Domenico Paparo; Lorenzo Marrucci; Riccardo Bruzzese; S. Amoruso
In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.
Scientific Reports | 2017
Alessio D’Errico; Maria Maffei; Bruno Piccirillo; Corrado de Lisio; Filippo Cardano; Lorenzo Marrucci
Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.
New Journal of Physics | 2017
Maria Maffei; Alexandre Dauphin; Filippo Cardano; Maciej Lewenstein; Pietro Massignan
We study chiral models in one spatial dimension, both static and periodically driven. We demonstrate that their topological properties may be read out through the long time limit of a bulk observable, the mean chiral displacement. The derivation of this result is done in terms of spectral projectors, allowing for a detailed understanding of the physics. We show that the proposed detection converges rapidly and it can be implemented in a wide class of chiral systems. Furthermore, it can measure arbitrary winding numbers and topological boundaries, it applies to all non-interacting systems, independently of their quantum statistics, and it requires no additional elements, such as external fields, nor filled bands.
Applied Physics Letters | 2018
E. Allahyari; J. Jj Nivas; Filippo Cardano; Riccardo Bruzzese; R. Fittipaldi; Lorenzo Marrucci; Domenico Paparo; Andrea Rubano; A. Vecchione; S. Amoruso
We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction ex...
Science Advances | 2018
Alvaro Cuevas; Juan Camilo López Carreño; Blanca Silva; Milena De Giorgi; Daniel G. Suárez-Forero; Carlos Sánchez Muñoz; Antonio Fieramosca; Filippo Cardano; Lorenzo Marrucci; Vittorianna Tasco; Giorgio Biasiol; Lorenzo Dominici; Dario Ballarini; Giuseppe Gigli; Paolo Mataloni; Fabrice P. Laussy; Fabio Sciarrino; D. Sanvitto
Álvaro Cuevas,1, 2, ∗ Blanca Silva,1, 3, ∗ Juan Camilo López Carreño,3, 4 Milena de Giorgi,1, † Carlos Sánchez Muñoz,3 Antonio Fieramosca,1 Daniel G. Suárez-Forero,1 Filippo Cardano,5 Lorenzo Marrucci,5 Vittorianna Tasco,1 Giorgio Biasiol,6 Elena del Valle,3 Lorenzo Dominici,1 Dario Ballarini,1 Giuseppe Gigli,1 Paolo Mataloni,2 Fabrice P. Laussy,4, 7, ‡ Fabio Sciarrino,2 and Daniele Sanvitto1 CNR NANOTEC—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy Dipartimento di Fisica, Sapienza University of Rome, Piazzale Aldo Moro, 2, 00185 Rome, Italy Departamento de F́ısica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St, Wolverhampton WV1 1LY, UK Università di Napoli Federico II, Napoli, Italy Istituto Officina dei Materiali CNR, Laboratorio TASC, I-34149 Trieste, Italy Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia (Dated: September 30, 2018)Polaritons reach the quantum limit, providing a new and promising platform of strongly coherent and interacting particles. Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.