Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filippo Doria is active.

Publication


Featured researches published by Filippo Doria.


Journal of the American Chemical Society | 2009

Quinone Methides Tethered to Naphthalene Diimides as Selective G-Quadruplex Alkylating Agents

Marco Di Antonio; Filippo Doria; Sara N. Richter; Carolina Bertipaglia; Mariella Mella; Claudia Sissi; Manlio Palumbo; Mauro Freccero

We have developed novel G-quadruplex (G-4) ligand/alkylating hybrid structures, tethering the naphthalene diimide moiety to quaternary ammonium salts of Mannich bases, as quinone-methide precursors, activatable by mild thermal digestion (40 degrees C). The bis-substituted naphthalene diimides were efficiently synthesized, and their reactivity as activatable bis-alkylating agents was investigated in the presence of thiols and amines in aqueous buffered solutions. The electrophilic intermediate, quinone-methide, involved in the alkylation process was trapped, in the presence of ethyl vinyl ether, in a hetero Diels-Alder [4 + 2] cycloaddition reaction, yielding a substituted 2-ethoxychroman. The DNA recognition and alkylation properties of these new derivatives were investigated by gel electrophoresis, circular dichroism, and enzymatic assays. The alkylation process occurred preferentially on the G-4 structure in comparison to other DNA conformations. By dissecting reversible recognition and alkylation events, we found that the reversible process is a prerequisite to DNA alkylation, which in turn reinforces the G-quadruplex structural rearrangement.


Journal of the American Chemical Society | 2010

Rational Design of Acridine-Based Ligands with Selectivity for Human Telomeric Quadruplexes

Silvia Sparapani; Shozeb Haider; Filippo Doria; Mekala Gunaratnam; Stephen Neidle

Structure-based modeling methods have been used to design a series of disubstituted triazole-linked acridine compounds with selectivity for human telomeric quadruplex DNAs. A focused library of these compounds was prepared using click chemistry and the selectivity concept was validated against two promoter quadruplexes from the c-kit gene with known molecular structures, as well as with duplex DNA using a FRET-based melting method. Lead compounds were found to have reduced effects on the thermal stability of the c-kit quadruplexes and duplex DNA structures. These effects were further explored with a series of competition experiments, which confirmed that binding to duplex DNA is very low even at high duplex:telomeric quadruplex ratios. Selectivity to the c-kit quadruplexes is more complex, with some evidence of their stabilization at increasing excess over human telomeric quadruplex DNA. Selectivity is a result of the dimensions of the triazole-acridine compounds, and in particular the separation of the two alkyl-amino terminal groups. Both lead compounds also have selective inhibitory effects on the proliferation of cancer cell lines compared to a normal cell line, and one has been shown to inhibit the activity of the telomerase enzyme, which is selectively expressed in tumor cells, where it plays a role in maintaining telomere integrity and cellular immortalization.


Biochimie | 2011

Naphthalene diimide scaffolds with dual reversible and covalent interaction properties towards G-quadruplex

Matteo Nadai; Filippo Doria; Marco Di Antonio; Giovanna Sattin; Luca Germani; Claudia Percivalle; Manlio Palumbo; Sara N. Richter; Mauro Freccero

Selective recognition and alkylation of G-quadruplex oligonucleotides has been achieved by substituted naphathalene diimides (NDIs) conjugated to engineered phenol moieties by alkyl-amido spacers with tunable length and conformational mobility. FRET-melting assays, circular dichroism titrations and gel electrophoresis analysis have been carried out to evaluate both reversible stabilization and alkylation of the G-quadruplex. The NDIs conjugated to a quinone methide precursor (NDI-QMP) and a phenol moiety by the shortest alkyl-amido spacer exhibited a planar and fairly rigid geometry (modelled by DFT computation). They were the best irreversible and reversible G-quadruplex binders, respectively. The above NDI-QMP was able to alkylate the telomeric G-quadruplex DNA in the nanomolar range and resulted 100-1000 times more selective on G-quadruplex versus single- and double-stranded oligonucleotides. This compound was also the most cytotoxic against a lung carcinoma cell line.


Journal of the American Chemical Society | 2010

Photogeneration and Reactivity of Naphthoquinone Methides as Purine Selective DNA Alkylating Agents

Daniela Verga; Matteo Nadai; Filippo Doria; Claudia Percivalle; Marco Di Antonio; Manlio Palumbo; Sara N. Richter; Mauro Freccero

A one-step protecting-group-free synthesis of both 6-hydroxy-naphthalene-2-carbaldehyde and the bifunctional binaphthalenyl derivative afforded 6-hydroxymethylnaphthalen-2-ol, 6-methylaminomethyl-naphthalen-2-ol, [(2-hydroxy-3-naphthyl)methyl]trimethyl ammonium iodide, and a small library of bifunctional binol analogues in good yields. Irradiation of naphthol quaternary ammonium salt and binol-derivatives (X = OH, NHR, NMe(3)(+), OCOCH(3), and L-proline) at 310 and 360 nm resulted in the photogeneration of the 2,6-naphthoquinone-6-methide (NQM) and binol quinone methide analogues (BQMs) by a water-mediated excited-state proton transfer (ESPT). The hydration, the mono- and bis-alkylation reactions of morpholine and 2-ethanethiol, as N and S prototype nucleophiles, by the transient NQM (λ(max) 310, 330 nm) and BQMs (λ(max) 360 nm) were investigated in water by product distribution analysis and laser flash photolysis (LFP). Both the photogeneration and the reactivity of NQM and BQMs exhibited striking differences. BQMs were at least 2 orders of magnitude more reactive than NQM, and they were generated much more efficiently from a greater variety of photoprecursors including the hydroxymethyl, quaternary ammonium salt and several binol-amino acids. On the contrary, the only efficient precursor of NQM was the quaternary ammonium salt. All water-soluble BQM precursors were further investigated for their ability to alkylate and cross-link plasmid DNA and oligonucleotides by gel electrophoresis: the BQMs were more efficient than the isomeric o-BQM (binol quinone methide analogue of 2,3-naphthoquinone-3-methide). Sequence analysis by gel electrophoresis, HPLC, and MS showed that the alkylation occurred at purines, with a preference for guanine. In particular, a BQM was able to alkylate N7 of guanines resulting in depurination at the oligonucleotide level, and ribose loss at the nucleotide level. The photoreactivity of BQM precursors translated into photocytotoxic and cytotoxic effects on two human cancer cell lines: in particular, one compound showed promising selectivity index on both cell lines.


Chemistry: A European Journal | 2013

Targeting Loop Adenines in G-Quadruplex by a Selective Oxirane

Filippo Doria; Matteo Nadai; Marco Folini; Matteo Scalabrin; Luca Germani; Giovanna Sattin; Mariella Mella; Manlio Palumbo; Nadia Zaffaroni; Daniele Fabris; Mauro Freccero; Sara N. Richter

Caught in the oxirane: Naphthalene diimides conjugated to a quinone methide and an oxirane have been synthesized and investigated as selective DNA G-quadruplex alkylating agents. The oxirane derivative generates a stable adduct with a G-quadruplex and shows selective alkylation of the loop adenines, as illustrated.


Organic and Biomolecular Chemistry | 2012

Water soluble extended naphthalene diimides as pH fluorescent sensors and G-quadruplex ligands

Filippo Doria; Matteo Nadai; Giovanna Sattin; Luca Pasotti; Sara N. Richter; Mauro Freccero

Extended naphthalene diimides (NDIs) fused to 1,4-dihydropyrazine-2,3-dione, containing two solubilizing moieties, have been synthesized. Fluorescence spectra of the new NDIs were remarkably affected by pH, as the second deprotonation of the dihydropyrazinedione moiety (pK(a) 6.9) switched off the emission. Binding to a G-quadruplex folded oligonucleotide and stoichiometry were evaluated by FRET melting assay and CD analysis. G-quadruplex binding was strongly enhanced shifting from pH 7.4 to pH 6.0 as a consequence of the dihydropyrazinedione moiety protonation. Cytotoxicity studies using two human telomerase-positive cell lines (HT29 and A549) revealed that the best G-quadruplex ligand was very active against the colon cell line, with an EC(50) of 300 nM.


Journal of Organic Chemistry | 2009

Substituted heterocyclic naphthalene diimides with unexpected acidity. Synthesis, properties, and reactivity.

Filippo Doria; Marco Di Antonio; Michele Benotti; Daniela Verga; Mauro Freccero

Naphthalene bisimides (NDIs) with a heterocyclic 1,4-dihydro-2,3-pyrazinedione moiety have been synthesized from both 2,6-dibromonaphthalene and 2,3,6,7-tetrabromonaphthalene bisanhydrides by means of a stepwise protocol including imidization, nucleophilic displacement of the bromine atoms by ethane-1,2-diamine, in situ reductive dehalogenation, and further oxidation. These heterocycles (R = n-pentyl, cyclohexyl) are yellow dyes with green emission in organic solvent, where the acid form dominates. The orange nonfluorescent conjugate base can be generated quantitatively by CH(3)COONBu(4) addition in DMSO, where it exhibits a pK(a) = 7.63. The conjugate base becomes the only detectable species (by UV-vis spectroscopy), in water solution, even under acid conditions (pH 1). In aqueous DMSO the acid/base equilibrium is a function of the DMSO/water ratio. The unexpected acidity of these heterocyclic NDIs, which justifies the reactivity with CH(2)N(2), has been rationalized by DFT computational means [PBE0/6-31+G(d,p)] in aqueous solvent (PCM models) as a result of a strong specific solvation effect, modeled by the inclusion of three water molecules.


Journal of Organic Chemistry | 2013

Water-Soluble Naphthalene Diimides as Singlet Oxygen Sensitizers

Filippo Doria; Ilse Manet; Vincenzo Grande; Sandra Monti; Mauro Freccero

Bromo- and/or alkylamino-substituted and hydrosoluble naphthalene diimides (NDIs) were synthesized to study their multimodal photophysical and photochemical properties. Bromine-containing NDIs (i.e., 11) behaved as both singlet oxygen ((1)O2) photosensitizers and fluorescent molecules upon irradiation at 532 nm. Among the NDIs not containing Br, only 12 exhibited photophysical properties similar to those of Br-NDIs, by irradiation above 610 nm, suggesting that for these NDIs both singlet and triplet excited-state properties are strongly affected by length, structure of the solubilizing moieties, and pH of the solution. Laser flash photolysis confirmed that the NDI lowest triplet excited state was efficiently populated, upon excitation at both 355 and 532 nm, and that free amine moieties quenched both the singlet and triplet excited states by intramolecular electron transfer, with generation of detectable radical anions. Time-resolved experiments, monitoring the 1270 nm (1)O2 phosphorescence decay generated upon laser irradiation at 532 nm, allowed a ranking of the NDIs as sensitizers, based on their (1)O2 quantum yields (ΦΔ). The tetrafunctionalized 12, exhibiting a long-lived triplet state (τ ~ 32 μs) and the most promising absorptivity for photodynamic therapy application, was tested as efficient photosensitizers in the photo-oxidations of 1,5-dihydroxynaphthalene and 9,10-anthracenedipropionic acid in acetonitrile and water.


Journal of Organic Chemistry | 2011

Quinone Methide Generation via Photoinduced Electron Transfer

Claudia Percivalle; Andrea La Rosa; Daniela Verga; Filippo Doria; Mariella Mella; Manlio Palumbo; Marco Di Antonio; Mauro Freccero

Photochemical activation of water-soluble 1,8-naphthalimide derivatives (NIs) as alkylating agents has been achieved by irradiation at 310 and 355 nm in aqueous acetonitrile. Reactivity in aqueous and neat acetonitrile has been extensively investigated by laser flash photolysis (LFP) at 355 nm, as well as by steady-state preparative irradiation at 310 nm in the presence of water, amines, thiols, and ethyl vinyl ether. Product distribution analysis revealed fairly efficient benzylation of the amines, hydration reaction, and 2-ethoxychromane generation, in the presence of ethyl vinyl ether, resulting from a [4 + 2] cycloaddition onto a transient quinone methide. Remarkably, we found that the reactivity was dramatically suppressed under the presence of oxygen and radical scavengers, such as thiols, which was usually associated with side product formation. In order to unravel the mechanism responsible for the photoreactivity of these NI-based molecules, a detailed LFP study has been carried out with the aim to characterize the transient species involved. LFP data suggest a photoinduced electron transfer (PET) involving the NI triplet excited state (λ(max) 470 nm) of the NI core and the tethered quinone methide precursor (QMP) generating a radical ions pair NI(•-) (λ(max) 410 nm) and QMP(•+). The latter underwent fast deprotonation to generate a detectable phenoxyl radical (λ(max) 390 and 700 nm), which was efficiently reduced by the radical anion NI(•-), generating detectable QM. The mechanism proposed has been validated through a LFP investigation at 355 nm exploiting an intermolecular reaction between the photo-oxidant N-pentylnaphthalimide (NI-P) and a quaternary ammonium salt of a Mannich base as QMP (2a), in both neat and aqueous acetonitrile. Remarkably, these experiments revealed the generation of the model o-QM (λ(max) 400 nm) as a long living transient mediated by the same reactivity pathway. Negligible QM generation has been observed under the very same conditions by irradiation of the QMP in the absence of the NI. Owing to the NIs redox and recognition properties, these results represent the first step toward new molecular devices capable of both biological target recognition and photoreleasing of QMs as alkylating species, under physiological conditions.


Journal of Medicinal Chemistry | 2015

Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes

Rosalba Perrone; Filippo Doria; Elena Butovskaya; Ilaria Frasson; Silvia Botti; Matteo Scalabrin; Sara Lago; Vincenzo Grande; Matteo Nadai; Mauro Freccero; Sara N. Richter

We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent, and some of them displayed clear-cut selectivity toward the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity toward two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity toward the viral G-quadruplexes and display remarkable antiviral activity.

Collaboration


Dive into the Filippo Doria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Folini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge