Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manlio Palumbo is active.

Publication


Featured researches published by Manlio Palumbo.


Journal of the American Chemical Society | 2009

Quinone Methides Tethered to Naphthalene Diimides as Selective G-Quadruplex Alkylating Agents

Marco Di Antonio; Filippo Doria; Sara N. Richter; Carolina Bertipaglia; Mariella Mella; Claudia Sissi; Manlio Palumbo; Mauro Freccero

We have developed novel G-quadruplex (G-4) ligand/alkylating hybrid structures, tethering the naphthalene diimide moiety to quaternary ammonium salts of Mannich bases, as quinone-methide precursors, activatable by mild thermal digestion (40 degrees C). The bis-substituted naphthalene diimides were efficiently synthesized, and their reactivity as activatable bis-alkylating agents was investigated in the presence of thiols and amines in aqueous buffered solutions. The electrophilic intermediate, quinone-methide, involved in the alkylation process was trapped, in the presence of ethyl vinyl ether, in a hetero Diels-Alder [4 + 2] cycloaddition reaction, yielding a substituted 2-ethoxychroman. The DNA recognition and alkylation properties of these new derivatives were investigated by gel electrophoresis, circular dichroism, and enzymatic assays. The alkylation process occurred preferentially on the G-4 structure in comparison to other DNA conformations. By dissecting reversible recognition and alkylation events, we found that the reversible process is a prerequisite to DNA alkylation, which in turn reinforces the G-quadruplex structural rearrangement.


Current Medicinal Chemistry - Anti-cancer Agents | 2003

The quinolone family: from antibacterial to anticancer agents.

Claudia Sissi; Manlio Palumbo

The present review focuses on the structural modifications responsible for the transformation of an antibacterial into an anticancer agent. Indeed, a distinctive feature of drugs based on the quinolone structure is their remarkable ability to target different type II topoisomerase enzymes. In particular, some congeners of this drug family display high activity not only against bacterial topoisomerases, but also against eukaryotic topoisomerases and are toxic to cultured mammalian cells and in vivo tumor models. Hence, these cytotoxic quinolones represent an exploitable source of new anticancer agents, which might also help addressing side-toxicity and resistance phenomena. Their ability to bind metal ion co-factors represents an additional means of modulating their pharmacological response(s). Moreover, quinolones link antibacterial and anticancer chemotherapy together and provide an opportunity to clarify drug mechanism across divergent species.


Nucleic Acids Research | 2009

Effects of magnesium and related divalent metal ions in topoisomerase structure and function

Claudia Sissi; Manlio Palumbo

The catalytic steps through which DNA topoisomerases produce their biological effects and the interference of drug molecules with the enzyme–DNA cleavage complex have been thoroughly investigated both from the biophysical and the biochemical point of view. This provides the basic structural insight on how this family of essential enzymes works in living systems and how their functions can be impaired by natural and synthetic compounds. Besides other factors, the physiological environment is known to affect substantially the biological properties of topoisomerases, a key role being played by metal ion cofactors, especially divalent ions (Mg2+), that are crucial to bestow and modulate catalytic activity by exploiting distinctive chemical features such as ionic size, hardness and characteristics of the coordination sphere including coordination number and geometry. Indeed, metal ions mediate fundamental aspects of the topoisomerase-driven transphosphorylation process by affecting the kinetics of the forward and the reverse steps and by modifying the enzyme conformation and flexibility. Of particular interest in type IA and type II enzymes are ionic interactions involving the Toprim fold, a protein domain conserved through evolution that contains a number of acidic residues essential for catalysis. A general two-metal ion mechanism is widely accepted to account for the biophysical and biochemical data thus far available.


Trends in Pharmacological Sciences | 1997

A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons

Giovanni Capranico; Monica Binaschi; M.Evelina Borgnetto; Franco Zunino; Manlio Palumbo

Chemical agents able to interfere with DNA topoisomerases are widespread in nature, and some of them have outstanding therapeutic efficacy in human cancer and infectious diseases. DNA topoisomerases are essential enzymes that govern DNA topology during fundamental nuclear metabolic processes. Topoisomerase-interfering compounds can be divided into two general categories based on the mechanism of drug action: poisons and catalytic inhibitors. In past years, investigations of the DNA sequence selectivity of topoisomerase II poisons have identified structural and molecular determinants of drug activity, and indicated that the drug receptor is likely to be at the protein-DNA interface. Moreover, the available results indicate that the biologically relevant DNA-binding activity of topoisomerase poisons is basically protein-mediated and this is discussed in this issue by Giovanni Capranico and colleagues. This suggests that topoisomerase poisons may represent a useful paradigm for small compounds able to bind to protein-DNA interfaces in a site-selective manner, thus increasing the affinity of DNA-binding proteins for specific genomic sites.


Biochimie | 2011

The evolving world of protein-G-quadruplex recognition: A medicinal chemist’s perspective

Claudia Sissi; Manlio Palumbo

Abstract The physiological and pharmacological role of nucleic acids structures folded into the non canonical G-quadruplex conformation have recently emerged. Their activities are targeted at vital cellular processes including telomere maintenance, regulation of transcription and processing of the pre-messenger or telomeric RNA. In addition, severe conditions like cancer, fragile X syndrome, Bloom syndrome, Werner syndrome and Fanconi anemia J are related to genomic defects that involve G-quadruplex forming sequences. In this connection G-quadruplex recognition and processing by nucleic acid directed proteins and enzymes represents a key event to activate or deactivate physiological or pathological pathways. In this review we examine protein-G-quadruplex recognition in physiologically significant conditions and discuss how to possibly exploit the interactions’ selectivity for targeted therapeutic intervention.


Trends in Microbiology | 1993

On the mechanism of action of quinolone drugs

Manlio Palumbo; Giuseppe Zagotto; Giorgio Palù

Antibacterial quinolones are thought to inhibit DNA gyrase by trapping the enzyme as a complex with the DNA substrate. The precise molecular details of drug-DNA and drug-enzyme interactions remain controversial. Here, a model is proposed that accounts for the influence of magnesium ions on quinolone-DNA binding.


Biochimie | 2011

Naphthalene diimide scaffolds with dual reversible and covalent interaction properties towards G-quadruplex

Matteo Nadai; Filippo Doria; Marco Di Antonio; Giovanna Sattin; Luca Germani; Claudia Percivalle; Manlio Palumbo; Sara N. Richter; Mauro Freccero

Selective recognition and alkylation of G-quadruplex oligonucleotides has been achieved by substituted naphathalene diimides (NDIs) conjugated to engineered phenol moieties by alkyl-amido spacers with tunable length and conformational mobility. FRET-melting assays, circular dichroism titrations and gel electrophoresis analysis have been carried out to evaluate both reversible stabilization and alkylation of the G-quadruplex. The NDIs conjugated to a quinone methide precursor (NDI-QMP) and a phenol moiety by the shortest alkyl-amido spacer exhibited a planar and fairly rigid geometry (modelled by DFT computation). They were the best irreversible and reversible G-quadruplex binders, respectively. The above NDI-QMP was able to alkylate the telomeric G-quadruplex DNA in the nanomolar range and resulted 100-1000 times more selective on G-quadruplex versus single- and double-stranded oligonucleotides. This compound was also the most cytotoxic against a lung carcinoma cell line.


Bioorganic & Medicinal Chemistry | 2001

In vitro selection of DNA aptamers that bind L-tyrosinamide.

Elena Vianini; Manlio Palumbo

We have applied SELEX (Systematic Evolution of Ligands by EXponential enrichment), a combinatorial method that employs biopolymers for drug discovery, to identify single stranded DNA sequences able to bind L-Tyrosinamide, a simple mimic of Tyrosine, an amino acid essential to the catalytic activity of several enzymes of pharmaceutical interest. After 15 SELEX cycles using L-Tyrosinamide immobilized on an affinity chromatography column, the percentage of aptamers specifically eluted from the affinity column with free L-Tyrosinamide was 55% of the total. Aptamers were subcloned and sequenced, allowing the identification of a highly conserved consensus sequence, and showed a K(d) value for L-Tyrosinamide of 45 microM. The identified aptamer sequence will constitute the basis for further in vitro evolution protocols and structure-based drug design.


Journal of the American Chemical Society | 2010

Photogeneration and Reactivity of Naphthoquinone Methides as Purine Selective DNA Alkylating Agents

Daniela Verga; Matteo Nadai; Filippo Doria; Claudia Percivalle; Marco Di Antonio; Manlio Palumbo; Sara N. Richter; Mauro Freccero

A one-step protecting-group-free synthesis of both 6-hydroxy-naphthalene-2-carbaldehyde and the bifunctional binaphthalenyl derivative afforded 6-hydroxymethylnaphthalen-2-ol, 6-methylaminomethyl-naphthalen-2-ol, [(2-hydroxy-3-naphthyl)methyl]trimethyl ammonium iodide, and a small library of bifunctional binol analogues in good yields. Irradiation of naphthol quaternary ammonium salt and binol-derivatives (X = OH, NHR, NMe(3)(+), OCOCH(3), and L-proline) at 310 and 360 nm resulted in the photogeneration of the 2,6-naphthoquinone-6-methide (NQM) and binol quinone methide analogues (BQMs) by a water-mediated excited-state proton transfer (ESPT). The hydration, the mono- and bis-alkylation reactions of morpholine and 2-ethanethiol, as N and S prototype nucleophiles, by the transient NQM (λ(max) 310, 330 nm) and BQMs (λ(max) 360 nm) were investigated in water by product distribution analysis and laser flash photolysis (LFP). Both the photogeneration and the reactivity of NQM and BQMs exhibited striking differences. BQMs were at least 2 orders of magnitude more reactive than NQM, and they were generated much more efficiently from a greater variety of photoprecursors including the hydroxymethyl, quaternary ammonium salt and several binol-amino acids. On the contrary, the only efficient precursor of NQM was the quaternary ammonium salt. All water-soluble BQM precursors were further investigated for their ability to alkylate and cross-link plasmid DNA and oligonucleotides by gel electrophoresis: the BQMs were more efficient than the isomeric o-BQM (binol quinone methide analogue of 2,3-naphthoquinone-3-methide). Sequence analysis by gel electrophoresis, HPLC, and MS showed that the alkylation occurred at purines, with a preference for guanine. In particular, a BQM was able to alkylate N7 of guanines resulting in depurination at the oligonucleotide level, and ribose loss at the nucleotide level. The photoreactivity of BQM precursors translated into photocytotoxic and cytotoxic effects on two human cancer cell lines: in particular, one compound showed promising selectivity index on both cell lines.


Journal of Medicinal Chemistry | 2013

A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter.

Rosalba Perrone; Matteo Nadai; Ilaria Frasson; Jerrod A. Poe; Elena Butovskaya; Thomas E. Smithgall; Manlio Palumbo; Giorgio Palù; Sara N. Richter

G-Quadruplexes, noncanonical nucleic acid structures, act as silencers in the promoter regions of human genes; putative G-quadruplex forming sequences are also present in promoters of other mammals, yeasts, and prokaryotes. Here we show that also the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional regulation with striking similarities to eukaryotic promoters and that treatment with a G-quadruplex ligand inhibits HIV-1 infectivity. Computational analysis on 953 HIV-1 strains substantiated a highly conserved G-rich sequence corresponding to Sp1 and NF-κB binding sites. Biophysical/biochemical analysis proved that two mutually exclusive parallel-like intramolecular G-quadruplexes, stabilized by small molecule ligands, primarily fold in this region. Mutations disrupting G-quadruplex formation enhanced HIV promoter activity in cells, whereas treatment with a G-quadruplex ligand impaired promoter activity and displayed antiviral effects. These findings disclose the possibility of inhibiting the HIV-1 LTR promoter by G-quadruplex-interacting small molecules, providing a new pathway to development of anti-HIV-1 drugs with unprecedented mechanism of action.

Collaboration


Dive into the Manlio Palumbo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge