Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiona Crispie is active.

Publication


Featured researches published by Fiona Crispie.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon

Mary C. Rea; Alleson Dobson; Orla O'Sullivan; Fiona Crispie; Fiona Fouhy; Paul D. Cotter; Fergus Shanahan; Barry Kiely; Colin Hill; R.P. Ross

Vancomycin, metronidazole, and the bacteriocin lacticin 3147 are active against a wide range of bacterial species, including Clostridium difficile. We demonstrate that, in a human distal colon model, the addition of each of the three antimicrobials resulted in a significant decrease in numbers of C. difficile. However, their therapeutic use in the gastrointestinal tract may be compromised by their broad spectrum of activity, which would be expected to significantly impact on other members of the human gut microbiota. We used high-throughput pyrosequencing to compare the effect of each antimicrobial on the composition of the microbiota. All three treatments resulted in a decrease in the proportion of sequences assigned to the phyla Firmicutes and Bacteroidetes, with a corresponding increase in those assigned to members of the Proteobacteria. One possible means of avoiding such “collateral damage” would involve the application of a narrow-spectrum antimicrobial with specific anti-C. difficile activity. We tested this hypothesis using thuricin CD, a narrow-spectrum bacteriocin produced by Bacillus thuringiensis, which is active against C. difficile. The results demonstrated that this bacteriocin was equally effective at killing C. difficile in the distal colon model but had no significant impact on the composition of the microbiota. This offers the possibility of developing a targeted approach to eliminating C. difficile in the colon, without collateral damage.


Psychoneuroendocrinology | 2015

Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood

Anna V. Golubeva; Sean J. Crampton; Lieve Desbonnet; Deirdre Edge; Orla O'Sullivan; Kevin W. Lomasney; Alexander V. Zhdanov; Fiona Crispie; Rachel D. Moloney; Yuliya E. Borre; Paul D. Cotter; Niall P. Hyland; Ken D. O’Halloran; Timothy G. Dinan; Gerard W. O’Keeffe; John F. Cryan

Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.


Translational Psychiatry | 2013

Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat

Kieran J. Davey; Paul D. Cotter; Orfhlaith E. O'Sullivan; Fiona Crispie; Timothy G. Dinan; John F. Cryan; Siobhain M. O'Mahony

The atypical antipsychotic olanzapine is often associated with serious metabolic side effects including weight gain and increased visceral fat. These adverse events are a considerable clinical problem and the mechanisms underlying them are multifactorial and poorly understood. Growing evidence suggests that the gut microbiota has a key role in energy regulation and disease states such as obesity. Moreover, we recently showed that chronic olanzapine altered the composition of the gut microbiome in the rat. It is thus possible that treatments that alter gut microbiota composition could ameliorate olanzapine-induced weight gain and associated metabolic syndrome. To this end, we investigated the impact of antibiotic-induced alteration of the gut microbiota on the metabolic effects associated with chronic olanzapine treatment in female rats. Animals received vehicle or olanzapine (2 mg kg−1 per day) for 21 days, intraperitoneal injection, two times daily. Animals were also coadministered vehicle or an antibiotic cocktail consisting of neomycin (250 mg kg−1 per day), metronidazole (50 mg kg−1 per day) and polymyxin B (9 mg kg−1 per day) by oral gavage, daily, beginning 5 days before olanzapine treatment. The antibiotic cocktail drastically altered the microbiota of olanzapine-treated rats, and olanzapine alone was also associated with an altered microbiota. Coadministration of the antibiotic cocktail in olanzapine-treated rats attenuated: body weight gain, uterine fat deposition, macrophage infiltration of adipose tissue, plasma free fatty acid levels, all of which were increased by olanzapine alone. These results suggest that the gut microbiome has a role in the cycle of metabolic dysfunction associated with olanzapine, and could represent a novel therapeutic target for preventing antipsychotic-induced metabolic disease.


PLOS ONE | 2015

N-3 Polyunsaturated Fatty Acids (PUFAs) Reverse the Impact of Early-Life Stress on the Gut Microbiota

Matteo M. Pusceddu; Sahar El Aidy; Fiona Crispie; Orla O’Sullivan; Paul D. Cotter; Catherine Stanton; Philip M. Kelly; John F. Cryan; Timothy G. Dinan

Background Early life stress is a risk factor for many psychiatric disorders ranging from depression to anxiety. Stress, especially during early life, can induce dysbiosis in the gut microbiota, the key modulators of the bidirectional signalling pathways in the gut-brain axis that underline several neurodevelopmental and psychiatric disorders. Despite their critical role in the development and function of the central nervous system, the effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the regulation of gut-microbiota in early-life stress has not been explored. Methods and Results Here, we show that long-term supplementation of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) (80% EPA, 20% DHA) n-3 PUFAs mixture could restore the disturbed gut-microbiota composition of maternally separated (MS) female rats. Sprague-Dawley female rats were subjected to an early-life stress, maternal separation procedure from postnatal days 2 to 12. Non-separated (NS) and MS rats were administered saline, EPA/DHA 0.4 g/kg/day or EPA/DHA 1 g/kg/day, respectively. Analysis of the gut microbiota in adult rats revealed that EPA/DHA changes composition in the MS, and to a lesser extent the NS rats, and was associated with attenuation of the corticosterone response to acute stress. Conclusions In conclusion, EPA/DHA intervention alters the gut microbiota composition of both neurodevelopmentally normal and early-life stressed animals. This study offers insights into the interaction between n-3 PUFAs and gut microbes, which may play an important role in advancing our understanding of disorders of mood and cognitive functioning, such as anxiety and depression.


Journal of Dairy Research | 2008

Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials

Katja Klostermann; Fiona Crispie; James Flynn; R. Paul Ross; Colin Hill; William J. Meaney

A treatment containing a live food-grade organism, Lactococcus lactis DPC3147, was compared with conventional antibiotic therapy for its potential to treat bovine chronic subclinical or clinical mastitis in two separate field trials. Effects on disease symptoms and bacteriology were monitored in response to infusion with the culture in each trial. In the first trial, the live culture treatment was compared with an intramammary antibiotic (n=11 quarters for each treatment). Results from this small trial demonstrated that the live culture had potential to be as effective at eliminating chronic subclinical infections as an antibiotic treatment. By day 12, 7 of the 11 quarters treated with the live culture were pathogen-free compared with 5 of the 11 antibiotic-treated infected quarters. Somatic cell counts (SCC) remained relatively unchanged regardless of treatment: average log SCC pre- and post-treatment in the lactococci-treated group were 6.33+/-0.41 (day 0) and 6.27+/-0.43 cells/ml (day 12) and average log SCC pre- and post-treatment in the antibiotic-treated group were 6.34+/-0.37 and 6.22+/-0.46 cells/ml on day 0 and on day 12, respectively. In the second trial, the live culture was compared with an intramammary antibiotic for the treatment of naturally occurring clinical mastitis cases (n=25 quarters for each treatment). Following a 14-d experimental period, similar bacteriological responses were observed in 7 out of 25 live culture treated quarters and 9 out of 25 antibiotic-treated quarters. Additionally, 15 of 25 cases treated with the culture and 18 of 25 cases treated with the antibiotic did not exhibit clinical signs of the disease following treatment. The results of these trials suggest that live culture treatment with Lc. lactis DPC3147 may be as efficacious as common antibiotic treatments in some instances.


Journal of Dairy Research | 2008

Intramammary infusion of a live culture for treatment of bovine mastitis: effect of live lactococci on the mammary immune response

Fiona Crispie; Mercedes Alonso-Gomez; Collette O'Loughlin; Katja Klostermann; James Flynn; Sean Arkins; William J. Meaney; R. Paul Ross; Colin Hill

In the accompanying article, we demonstrated that a live culture of Lactococcus lactis compares favourably with antibiotics for treatment of bovine mastitis in two initial field trials. In an effort to explain the mechanism involved, this study investigated the effect of culture administration on the local immune response. In this respect we initially observed that infusion of the live culture Lactococcus lactis stimulated substantial recruitment of polymorphonucleocytes (PMN) and lymphocytes to the udder. For instance, in one assay, quarters infused with the probiotic experienced a dramatic increase (approximately 20,000-fold) in neutrophils over the first 48-h period from an average value of 83.6 cells/ml pre-treatment to 1.78 x 106 cells/ml 48 h post-infusion. Levels of the acute phase proteins haptaglobin and milk amyloid A were also elevated significantly in comparison with controls following infusion of the culture. The results of flow cytometric assays also demonstrated that while infusion of a live lactococcal culture led to an enhanced recruitment of PMN to the udder (from 1.85 x 104 cells/ml pre-infusion to 1.45 x 106 cells/ml 24 h post-infusion) cell-free supernatant from the same culture was not able to do so, indicating that live Lc. lactis can specifically trigger the mammary immune response to elicit PMN accumulation. These results suggest that the mechanism responsible for this probiotic treatment of mastitis is associated with stimulation of the host intramammary immune system.


Journal of Dairy Research | 2010

Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis

Katja Klostermann; Fiona Crispie; James Flynn; William J. Meaney; R. Paul Ross; Colin Hill

On most dairy farms teat dips are applied to the teats of cows either before or after milking in order to prevent pathogens from gaining access to the mammary gland via the teat canal. In the present experiments, a natural teat dip was developed using a fermentate containing the live bacterium Lactococcus lactis DPC 3251. This bacterium produces lacticin 3147, a two-component lantibiotic which was previously shown to effectively kill Gram-positive mastitis pathogens. Lacticin 3147 activity in the fermentate was retained at 53% of its original level following storage for 3 weeks at 4 degrees C. In the initial experiments in vitro, 105 colony-forming units/ml (cfu/ml) of either Staphylococcus aureus, Streptococcus dysgalactiae or Streptococcus uberis were introduced into the lacticin-containing fermentate. Neither Staph. aureus nor Str. dysgalactiae could be detected after 30 min or 15 min, respectively, while Str. uberis was reduced approximately 100-fold after 15 min. Following these trials, preliminary experiments were performed in vivo on teats of lactating dairy cows. In these experiments, teats were coated with each of the challenge organisms and then dipped with the lacticin-containing fermented teat dip. Following a dip contact time of 10 min, staphylococci were reduced by 80% when compared with the undipped control teat. Streptococcal challenges were reduced by 97% for Str. dysgalactiae and by 90% for Str. uberis. These trials showed that the teat dip is able to reduce mastitis pathogens on the teats of lactating cows.


Journal of Dairy Research | 2005

The lantibiotic lacticin 3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus.

Fiona Crispie; Denis P. Twomey; James Flynn; Colin Hill; Paul Ross; William J. Meaney

A preparation of the bacteriocin lacticin 3147 (prepared from a demineralized whey protein fermentation liquor) was combined as a powder with a bismuth-based intramammary teat seal and evaluated for its potential as an antimicrobial in non-lactating cows. The lacticin/teat seal formulation enabled significant bacteriocin release from the seal without the requirement for a surfactant. Studies in vivo in lactating cows demonstrated that this formulation was effective in reducing bacterial recoveries (approximately 20-fold) from teats deliberately inoculated with Staphylococcus aureus after infusion. Moreover, this formulation also significantly reduced the numbers of Staph. aureus recovered from teats that were exposed to the challenge bacterium before the infusion of the teat seal preparation. The powdered preparation of lacticin 3147 did, however, cause some teat irritation as evidenced by associated rises in somatic cell count (SCC). However, this effect was short-lived and when the mean SCC readings pre-infusion and the final two readings post-infusion were compared, there was no significant difference in the immunological acceptance between treatments.


FEMS Microbiology Ecology | 2011

Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract.

Alleson Dobson; Fiona Crispie; Mary C. Rea; Orla O'Sullivan; Pat G. Casey; Peadar G. Lawlor; Paul D. Cotter; Paul Ross; Gillian E. Gardiner; Colin Hill

Gastrointestinal survival of the bacteriocin-producing strain, Lactococcus lactis DPC6520, was evaluated systematically in vitro and in vivo with a view to using this strain to deliver biologically active lacticin 3147, a broad-spectrum bacteriocin, to the gut. The activity of the lacticin 3147 producer was also evaluated against two clinically relevant pathogens: Clostridium difficile and Listeria monocytogenes. When suspended in an appropriate matrix, the lactococcal strain is capable of surviving simulated gastrointestinal juices similar to the porcine probiotic, Lactobacillus salivarius DPC6005. Upon administration of L. lactis DPC6520 to pigs (n=4), excretion rates of ∼10(2) -10(5) CFU g(-1) faeces were observed by day 5. Although passage through the gastrointestinal tract (GIT) did not affect lacticin 3147 production by L. lactis DPC6520 isolates, activity was undetectable in faecal samples by an agar well diffusion assay. Furthermore, L. lactis DPC6520 had no inhibitory effect on C. difficile or other bacterial populations in a human distal colon model, while lactococcal counts declined 10,000-fold over 24 h. The lacticin 3147 producer failed to prevent L. monocytogenes infection in a mouse model, even though a mean L. lactis DPC6520 count of 4.7 × 10(4) CFU g(-1) faeces was obtained over the 5-day administration period. These data demonstrate that L. lactis DPC6520 is capable of surviving transit through the GIT, and yet lacks antimicrobial efficacy in the models of infection used.


Applied and Environmental Microbiology | 2017

Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs

Ursula M. McCormack; Tânia Curiao; Stefan G. Buzoianu; Maria Luz Prieto; Tomas Ryan; Patrick Varley; Fiona Crispie; Elizabeth Magowan; Barbara U. Metzler-Zebeli; D.P. Berry; Orla O'Sullivan; Paul D. Cotter; Gillian E. Gardiner; Peadar G. Lawlor

ABSTRACT Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eighty-one pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes, predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae, Oscillibacter, and Cellulosilyticum) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae (Rhodococcus) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs. IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is that, although microbial diversity did not differ among animals of varying FE, specific intestinal microbes could potentially be linked with porcine FE. However, as the factors impacting FE are still not fully understood, intestinal microbiota composition may not be a major factor determining differences in FE. Nonetheless, this work has provided a potential set of microbial biomarkers for FE in pigs. Although culturability could be a limiting factor and intervention studies are required, these taxa could potentially be targeted in the future to manipulate the intestinal microbiome so as to improve FE in pigs. If successful, this has the potential to reduce both production costs and the environmental impact of pig production.

Collaboration


Dive into the Fiona Crispie's collaboration.

Top Co-Authors

Avatar

Colin Hill

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Paul Ross

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge