Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiona E. McAllister is active.

Publication


Featured researches published by Fiona E. McAllister.


Nature Communications | 2014

iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis

David C. Schöndorf; Massimo Aureli; Fiona E. McAllister; Christopher J. Hindley; Florian Mayer; Benjamin Schmid; S. Pablo Sardi; Manuela Valsecchi; Susanna Hoffmann; Lukas Kristoffer Schwarz; Ulrike Hedrich; Daniela Berg; Lamya S. Shihabuddin; Jing Hu; Jan Pruszak; Steven P. Gygi; Sandro Sonnino; Thomas Gasser; Michela Deleidi

Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gauchers disease (GD), are the strongest genetic risk factor for Parkinsons disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration.


Nature | 2009

Chaperone-mediated pathway of proteasome regulatory particle assembly.

Jeroen Roelofs; Soyeon Park; Wilhelm Haas; Geng Tian; Fiona E. McAllister; Ying Huo; Byung-Hoon Lee; Fan Zhang; Yigong Shi; Steven P. Gygi; Daniel Finley

The proteasome is a protease that controls diverse processes in eukaryotic cells. Its regulatory particle (RP) initiates the degradation of ubiquitin–protein conjugates by unfolding the substrate and translocating it into the proteasome core particle (CP) to be degraded. The RP has 19 subunits, and their pathway of assembly is not understood. Here we show that in the yeast Saccharomyces cerevisiae three proteins are found associated with RP but not with the RP–CP holoenzyme: Nas6, Rpn14 and Hsm3. Mutations in the corresponding genes confer proteasome loss-of-function phenotypes, despite their virtual absence from the holoenzyme. These effects result from deficient RP assembly. Thus, Nas6, Rpn14 and Hsm3 are RP chaperones. The RP contains six ATPases–the Rpt proteins–and each RP chaperone binds to the carboxy-terminal domain of a specific Rpt. We show in an accompanying study that RP assembly is templated through the Rpt C termini, apparently by their insertion into binding pockets in the CP. Thus, RP chaperones may regulate proteasome assembly by directly restricting the accessibility of Rpt C termini to the CP. In addition, competition between the RP chaperones and the CP for Rpt engagement may explain the release of RP chaperones as proteasomes mature.


Nature Structural & Molecular Biology | 2011

An asymmetric interface between the regulatory and core particles of the proteasome

Geng Tian; Soyeon Park; Min Jae Lee; Bettina Huck; Fiona E. McAllister; Christopher P. Hill; Steven P. Gygi; Daniel Finley

The Saccharomyces cerevisiae proteasome comprises a 19-subunit regulatory particle and a 28-subunit core particle. To be degraded, substrates must cross the core particle–regulatory particle interface, a site for complex conformational changes and regulatory events. This interface includes two aligned heteromeric rings, one formed by the six ATPase (Rpt) subunits of the regulatory particle and the other by the seven α subunits of the core particle. The Rpt C termini bind to intersubunit cavities in the α-ring, thus directing core particle gating and proteasome assembly. We mapped the Rpt C termini to the α subunit pockets, using a cross-linking approach that revealed an unexpected asymmetry: one side of the ring shows 1:1 contacts of Rpt2-α4, Rpt6-α3 and Rpt3-α2, whereas on the opposite side, the Rpt1, Rpt4 and Rpt5 tails each cross-link to multiple α pockets. Rpt–core particle cross-links are all sensitive to nucleotides, implying that ATP hydrolysis drives dynamic alterations at the core particle–regulatory particle interface.


Analytical Chemistry | 2013

Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run.

Robert A. Everley; Ryan C. Kunz; Fiona E. McAllister; Steven P. Gygi

Targeted proteomics assays such as those measuring end points in activity assays are sensitive and specific but often lack in throughput. In an effort to significantly increase throughput, a comparison was made between the traditional approach which utilizes an internal standard and the multiplexing approach which relies on isobaric tagging. A kinase activity assay was used for proof of concept, and experiments included three biological replicates for every condition. Results from the two approaches were highly similar with the multiplexing showing greater throughput. Two novel 6-plex isobaric tags were added for a total of three 6-plex experiments (18-plex) in a single run. Next, three mass variants of the target peptide were labeled with the three isobaric tags giving nine 6-plex reactions for 54-plex quantitation in a single run. Since the multiplexing approach allows all samples to be combined prior to purification and acquisition, the 54-plex approach resulted in a significant reduction in purification resources (time, reagents, etc.) and a ~50-fold improvement in acquisition throughput. We demonstrate the 54-plex assay in several ways including measuring inhibition of PKA activity in MCF7 cell lysates for a panel of nine compounds.


Proteomics | 2015

Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10‐plex quantitative proteomics and phosphoproteomics

Joao A. Paulo; Fiona E. McAllister; Robert A. Everley; Sean A. Beausoleil; Alexander S. Banks; Steven P. Gygi

Multiplexed isobaric tag based quantitative proteomics and phosphoproteomics strategies can comprehensively analyze drug treatments effects on biological systems. Given the role of mitogen‐activated protein/extracellular signal‐regulated kinase (MEK) signaling in cancer and mitogen‐activated protein kinase (MAPK)‐dependent diseases, we sought to determine if this pathway could be inhibited safely by examining the downstream molecular consequences. We used a series of tandem mass tag 10‐plex experiments to analyze the effect of two MEK inhibitors (GSK1120212 and PD0325901) on three tissues (kidney, liver, and pancreas) from nine mice. We quantified ∼6000 proteins in each tissue, but significant protein‐level alterations were minimal with inhibitor treatment. Of particular interest was kidney tissue, as edema is an adverse effect of these inhibitors. From kidney tissue, we enriched phosphopeptides using titanium dioxide (TiO2) and quantified 10 562 phosphorylation events. Further analysis by phosphotyrosine peptide immunoprecipitation quantified an additional 592 phosphorylation events. Phosphorylation motif analysis revealed that the inhibitors decreased phosphorylation levels of proline‐x‐serine‐proline (PxSP) and serine‐proline (SP) sites, consistent with extracellular‐signal‐regulated kinase (ERK) inhibition. The MEK inhibitors had the greatest decrease on the phosphorylation of two proteins, Barttin and Slc12a3, which have roles in ion transport and fluid balance. Further studies will provide insight into the effect of these MEK inhibitors with respect to edema and other adverse events in mouse models and human patients.


EMBO Reports | 2011

Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli

Francisca Cerda-Maira; Fiona E. McAllister; Nadine J. Bode; Kristin E. Burns; Steven P. Gygi; K. Heran Darwin

Prokaryotic ubiquitin‐like protein (Pup) is a post‐translational modifier that attaches to more than 50 proteins in Mycobacteria. Proteasome accessory factor A (PafA) is responsible for Pup conjugation to substrates, but the manner in which proteins are selected for pupylation is unknown. To address this issue, we reconstituted the pupylation of model Mycobacterium proteasome substrates in Escherichia coli, which does not encode Pup or PafA. Surprisingly, Pup and PafA were sufficient to pupylate at least 51 E. coli proteins in addition to the mycobacterial proteins. These data suggest that pupylation signals are intrinsic to targeted proteins and might not require Mycobacterium‐specific cofactors for substrate recognition by PafA in vivo.


Analytical Chemistry | 2013

Mass Spectrometry Based Method to Increase Throughput for Kinome Analyses Using ATP Probes

Fiona E. McAllister; Mario Niepel; Wilhelm Haas; Edward L. Huttlin; Peter K. Sorger; Steven P. Gygi

Protein kinases play critical roles in many biological and pathological processes, making them important targets for therapeutic drugs. Here, we desired to increase the throughput for kinome-wide profiling. A new workflow coupling ActivX ATP probe (AAP) affinity reagents with isotopic labeling to quantify the relative levels and modification states of kinases in cell lysates is described. We compared the new workflow to a classical proteomics approach in which fractionation was used to identify low-abundance kinases. We find that AAPs enriched approximately 90 kinases in a single analysis involving six cell lines or states in a single run, an 8-fold improvement in throughput relative to the classical approach. In general, AAPs cross-linked to both the active and inactive states of kinases but performing phosphopeptide enrichment made it possible to measure the phospho sites of regulatory residues lying in the kinase activation loops, providing information on activation state. When we compared the kinome across the six cell lines, representative of different breast cancer clinical subtypes, we observed that many kinases, particularly receptor tyrosine kinases, varied widely in abundance, perhaps explaining the differential sensitivities to kinase inhibitor drugs. The improved kinome profiling methods described here represent an effective means to perform systematic analysis of kinases involved in cell signaling and oncogenic transformation and for analyzing the effect of different inhibitory drugs.


Analytical Chemistry | 2012

A High-Throughput, Multiplexed Kinase Assay Using a Benchtop Orbitrap Mass Spectrometer To Investigate the Effect of Kinase Inhibitors on Kinase Signaling Pathways

Ryan C. Kunz; Fiona E. McAllister; John Rush; Steven P. Gygi

Protein phosphorylation is an important and ubiquitous post-translational modification in eukaryotic biological systems. The KAYAK (Kinase ActivitY Assay for Kinome profiling) assay measures the phosphorylation rates of dozens of peptide substrates simultaneously, directly from cell lysates. Here, we simplified the assay by removing the phosphopeptide enrichment step, increasing throughput while maintaining similar data quality. We term this new method, direct-KAYAK, because kinase activities were measured directly from reaction mixtures after desalting. In addition, new peptides were included to profile additional kinase pathways and redundant substrate peptides were removed. Finally, the method is now performed in 96-well plate format using a benchtop orbitrap mass spectrometer and the Pinpoint software package for improved data analysis. We applied the new high-throughput method to measure IC(50) values for kinases involved in monocyte-to-macrophage differentiation, a process important for inflammation and the immune response.


Diabetes | 2014

Carboxyl-Ester Lipase Maturity-Onset Diabetes of the Young Is Associated With Development of Pancreatic Cysts and Upregulated MAPK Signaling in Secretin-Stimulated Duodenal Fluid

Helge Ræder; Fiona E. McAllister; Erling Tjora; Shweta Bhatt; Ingfrid S. Haldorsen; Jiang Hu; Stefan Martin Willems; Mette Vesterhus; Abdelfattah El Ouaamari; Manway Liu; Maria B. Ræder; Heike Immervoll; Dag Hoem; Georg Dimcevski; Pål R. Njølstad; Steven P. Gygi; Rohit N. Kulkarni

Carboxyl-ester lipase (CEL) maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes and pancreatic exocrine dysfunction due to mutations in the CEL gene encoding CEL. The pathogenic mechanism for diabetes development is unknown. Since CEL is expressed mainly in pancreatic acinar cells, we asked whether we could find structural pancreatic changes in CEL-MODY subjects during the course of diabetes development. Furthermore, we hypothesized that the diseased pancreas releases proteins that are detectable in pancreatic fluid and potentially reflect activation or inactivation of disease-specific pathways. We therefore investigated nondiabetic and diabetic CEL-mutation carriers by pancreatic imaging studies and secretin-stimulated duodenal juice sampling. The secretin-stimulated duodenal juice was studied using cytokine assays, mass spectrometry (MS) proteomics, and multiplexed MS-based measurement of kinase activities. We identified multiple pancreatic cysts in all eight diabetic mutation carriers but not in any of the four nondiabetic mutation carriers or the six healthy controls. Furthermore, we identified upregulated mitogen-activated protein kinase (MAPK) target proteins and MAPK-driven cytokines and increased MAPK activity in the secretin-stimulated duodenal juice. These findings show that subjects with CEL-MODY develop multiple pancreatic cysts by the time they develop diabetes and that upregulated MAPK signaling in the pancreatic secretome may reflect the pathophysiological development of pancreatic cysts and diabetes.


Journal of Biological Chemistry | 2012

Mycobacterium tuberculosis Prokaryotic Ubiquitin-like Protein-deconjugating Enzyme Is an Unusual Aspartate Amidase

Kristin E. Burns; Fiona E. McAllister; Carsten Schwerdtfeger; Julian Mintseris; Francisca Cerda-Maira; Elke E. Noens; Matthias Wilmanns; Stevan R. Hubbard; Francesco D. Melandri; Huib Ovaa; Steven P. Gygi; K. Heran Darwin

Background: Dop is critical for the full virulence of Mycobacterium tuberculosis; however, its mechanism is not understood. Results: Asp-95 was identified as a catalytically significant residue. Conclusion: This work suggests that Asp-95 functions either as a direct nucleophile forming a unique anhydride intermediate or is part of a catalytic center that includes polarized water as the nucleophile. Significance: Understanding the mechanism of Dop can help guide the design and selection of inhibitors. Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.

Collaboration


Dive into the Fiona E. McAllister's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander S. Banks

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge