K. Heran Darwin
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Heran Darwin.
Science | 2008
Michael J. Pearce; Julian Mintseris; Jessica Ferreyra; Steven P. Gygi; K. Heran Darwin
The protein modifier ubiquitin is a signal for proteasome-mediated degradation in eukaryotes. Proteasome-bearing prokaryotes have been thought to degrade proteins via a ubiquitin-independent pathway. We have identified a prokaryotic ubiquitin-like protein, Pup (Rv2111c), which was specifically conjugated to proteasome substrates in the pathogen Mycobacterium tuberculosis. Pupylation occurred on lysines and required proteasome accessory factor A (PafA). In a pafA mutant, pupylated proteins were absent and substrates accumulated, thereby connecting pupylation with degradation. Although analogous to ubiquitylation, pupylation appears to proceed by a different chemistry. Thus, like eukaryotes, bacteria may use a small-protein modifier to control protein stability.
The EMBO Journal | 2001
K. Heran Darwin; Virginia L. Miller
Invasion of the intestinal epithelium by Salmonella sp. requires a type III secretion system (TTSS) common in many bacterial pathogens. TTSS translocate effector proteins from bacteria into eukaryotic cells. These effectors manipulate cellular functions in order to benefit the pathogen. In the human and animal pathogen Salmonella typhimurium, the expression of genes encoding the secreted effector molecules Sip/Ssp ABCD, SigD, SptP and SopE requires both the AraC/XylS‐like regulator InvF and the secretion chaperone SicA. In this work, an InvF binding site was identified in the promoter regions of three operons. SicA does not appear to affect InvF stability nor to bind DNA directly. However, SicA could be co‐purified with InvF, suggesting that InvF and SicA interact with each other to activate transcription from the effector gene promoters. This is the first demonstration of a contact between a protein cofactor and an AraC/XylS family transcriptional regulator and, moreover, is the first direct evidence of an interaction between a transcriptional regulator and a TTSS chaperone. The regulation of effector genes described here for InvF and SicA may represent a new paradigm for regulation of virulence in a wide variety of pathogens.
Molecular Microbiology | 2000
K. Heran Darwin; Virginia L. Miller
SigD and SigE (Salmonellainvasion gene) are proteins needed for optimal invasion of Salmonella typhimurium into eukaryotic cells in vitro. SigD is a secreted protein and SigE is a putative chaperone required for SigD stability and/or secretion. SigD is secreted by a type III secretion apparatus encoded within a pathogenicity island on the Salmonella chromosome known as Salmonella pathogenicity island 1 (SPI1). The expression of sigDE, which is not linked to SPI1, is co‐ordinately regulated with the SPI1 genes and is dependent on the transcriptional regulators SirA, HilA and InvF. These three proteins alone are unable to activate transcription from the sigD promoter in Escherichia coli, therefore it is likely that other factors are needed for expression. A screen for genes required for the expression of a sigD–lacZYA reporter fusion found a mutant with a transposon insertion in spaS, an SPI1 gene which encodes a putative inner‐membrane component of the type III secretion system. The expression of a SPI1 operon encoding a putative chaperone (SicA) and several secreted proteins (Sips B, C, D and A) was also reduced in this mutant. The regulation defect of the spaS mutant was complemented by sicA and not by spaS. Because sicA is encoded immediately downstream of spaS, the mutation in spaS was likely to be polar on the expression of sicA. In addition, a sicA disruption mutant was as defective as an invF deletion mutant for the expression of sigD, sicA and sipC reporter fusions. The introduction of plasmids encoding invF and sicA into a non‐pathogenic E. coli K‐12 strain stimulated the transcription of both a sicA– and a sigD–lacZYA promoter fusion. This result suggests that InvF and SicA are sufficient for the expression of these genes. This is the first demonstration of a positive regulatory role for a putative type III secretion system chaperone in the expression of virulence genes.
Cell Host & Microbe | 2012
Marie I. Samanovic; Chen Ding; Dennis J. Thiele; K. Heran Darwin
Transition metals such as iron, zinc, copper, and manganese are essential for the growth and development of organisms ranging from bacteria to mammals. Numerous studies have focused on the impact of iron availability during bacterial and fungal infections, and increasing evidence suggests that copper is also involved in microbial pathogenesis. Not only is copper an essential cofactor for specific microbial enzymes, but several recent studies also strongly suggest that copper is used to restrict pathogen growth in vivo. Here, we review evidence that animals use copper as an antimicrobial weapon and that, in turn, microbes have developed mechanisms to counteract the toxic effects of copper.
Molecular Microbiology | 2011
Richard A. Festa; Marcus B. Jones; Susan M. Butler-Wu; Daniel Sinsimer; Russell Gerads; William R. Bishai; Scott N. Peterson; K. Heran Darwin
In this work we describe the identification of a copper‐inducible regulon in Mycobacterium tuberculosis (Mtb). Among the regulated genes was Rv0190/MT0200, a paralogue of the copper metalloregulatory repressor CsoR. The five‐locus regulon, which includes a gene that encodes the copper‐protective metallothionein MymT, was highly induced in wild‐type Mtb treated with copper, and highly expressed in an Rv0190/MT0200 mutant. Importantly, the Rv0190/MT0200 mutant was hyper‐resistant to copper. The promoters of all five loci share a palindromic motif that was recognized by the gene product of Rv0190/MT0200. For this reason we named Rv0190/MT0200 RicR for regulated in copper repressor. Intriguingly, several of the RicR‐regulated genes, including MymT, are unique to pathogenic Mycobacteria. The identification of a copper‐responsive regulon specific to virulent mycobacterial species suggests copper homeostasis must be maintained during an infection. Alternatively, copper may provide a cue for the expression of genes unrelated to metal homeostasis, but nonetheless necessary for survival in a host.
Molecular Microbiology | 2006
Susan M. Butler; Richard A. Festa; Michael J. Pearce; K. Heran Darwin
Protein degradation is required for homeostasis of all living organisms. Self‐compartmentalized ATP‐dependent proteases are required for virulence of several pathogenic bacteria. Among the proteases implicated are ClpP and Lon, as well as the more recently identified bacterial proteasome. It is generally assumed that when a pathogen invades a host, microbial proteins become irreversibly damaged and need to be degraded. However, recent data suggest that proteolysis is also essential for virulence gene regulation. In this review, we will discuss what is known about the relationship between ATP‐dependent proteolysis and pathogenesis. In addition, we will propose other potential roles these chambered proteases may have in bacterial virulence. Importantly, these proteases show promise as targets for antimicrobial therapy.
Molecular Microbiology | 2004
K. Heran Darwin; Gang Lin; Zhiqiang Chen; Huilin Li; Carl Nathan
A screen for Mycobacterium tuberculosis (Mtb) mutants sensitive to reactive nitrogen intermediates identified transposon insertions in the presumptive proteasomal ATPase gene mpa (mycobacterium proteasome ATPase; Rv2115c). mpa mutants are attenuated in both wild type and nitric oxide synthase 2 deficient mice. In this work, we show that attenuation of mpa mutants is severe, and that Mpa is an ATPase associated with various cellular activities (AAA) ATPase that forms hexameric rings resembling the eukaryotic complex p97/valosin‐containing protein (VCP). Point mutations in the conserved Walker box ATPase motifs of Mpa greatly reduced or abolished ATPase activity in vitro and abrogated protection of Mtb against acidified nitrite. A mutant Mpa protein missing only its last two amino acids retained ATPase activity, yet failed to protect Mtb against nitrite. The corresponding strain was attenuated in mice. Thus, Mpa is an ATPase whose enzymatic activity is necessary but not sufficient to protect against reactive nitrogen intermediates.
The EMBO Journal | 2006
Michael J. Pearce; Pooja Arora; Richard A. Festa; Susan M. Butler-Wu; Rajesh S. Gokhale; K. Heran Darwin
The putative proteasome‐associated proteins Mpa (Mycobaterium proteasomal ATPase) and PafA (proteasome accessory factor A) of the human pathogen Mycobacterium tuberculosis (Mtb) are essential for virulence and resistance to nitric oxide. However, a direct link between the proteasome protease and Mpa or PafA has never been demonstrated. Furthermore, protein degradation by bacterial proteasomes in vitro has not been accomplished, possibly due to the failure to find natural degradation substrates or other necessary proteasome co‐factors. In this work, we identify the first bacterial proteasome substrates, malonyl Co‐A acyl carrier protein transacylase and ketopantoate hydroxymethyltransferase, enzymes that are required for the biosynthesis of fatty acids and polyketides that are essential for the pathogenesis of Mtb. Maintenance of the physiological levels of these enzymes required Mpa and PafA in addition to proteasome protease activity. Mpa levels were also regulated in a proteasome‐dependent manner. Finally, we found that a conserved tyrosine of Mpa was essential for function. Thus, these results suggest that Mpa, PafA, and the Mtb proteasome degrade bacterial proteins that are important for virulence in mice.
Nature Structural & Molecular Biology | 2010
Tao Wang; K. Heran Darwin; Huilin Li
Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an α-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.
Nature Reviews Microbiology | 2009
K. Heran Darwin
Proteasomes are ATP-dependent, multisubunit proteases that are found in all eukaryotes and archaea and some bacteria. In eukaryotes, the small protein ubiquitin is covalently attached in a post-translational manner to proteins that are targeted for proteasomal degradation. Despite the presence of proteasomes in many prokaryotes, ubiquitin or other post-translational protein modifiers were presumed to be absent from these organisms. Recently a prokaryotic ubiquitin-like protein, Pup, was found to target proteins for proteolysis by the Mycobacterium tuberculosis proteasome. The discovery of this ubiquitin-like modifier opens up the possibility that other bacteria may also have small post-translational protein tagging systems, with the ability to affect cellular processes.