Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiona J. E. Morgan is active.

Publication


Featured researches published by Fiona J. E. Morgan.


Mbio | 2014

A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus 15 Circulates in Humans and Companion Animals

Ewan M. Harrison; Lucy A. Weinert; Matthew T. G. Holden; John J. Welch; Katherine Wilson; Fiona J. E. Morgan; Simon R. Harris; Anette Loeffler; Amanda K. Boag; Sharon J. Peacock; Gavin K. Paterson; Andrew S. Waller; Julian Parkhill; Mark A. Holmes

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a global human health problem causing infections in both hospitals and the community. Companion animals, such as cats, dogs, and horses, are also frequently colonized by MRSA and can become infected. We sequenced the genomes of 46 multilocus sequence type (ST) 22 MRSA isolates from cats and dogs in the United Kingdom and compared these to an extensive population framework of human isolates from the same lineage. Phylogenomic analyses showed that all companion animal isolates were interspersed throughout the epidemic MRSA-15 (EMRSA-15) pandemic clade and clustered with human isolates from the United Kingdom, with human isolates basal to those from companion animals, suggesting a human source for isolates infecting companion animals. A number of isolates from the same veterinary hospital clustered together, suggesting that as in human hospitals, EMRSA-15 isolates are readily transmitted in the veterinary hospital setting. Genome-wide association analysis did not identify any host-specific single nucleotide polymorphisms (SNPs) or virulence factors. However, isolates from companion animals were significantly less likely to harbor a plasmid encoding erythromycin resistance. When this plasmid was present in animal-associated isolates, it was more likely to contain mutations mediating resistance to clindamycin. This finding is consistent with the low levels of erythromycin and high levels of clindamycin used in veterinary medicine in the United Kingdom. This study furthers the “one health” view of infectious diseases that the pathogen pool of human and animal populations are intrinsically linked and provides evidence that antibiotic usage in animal medicine is shaping the population of a major human pathogen. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is major problem in human medicine. Companion animals, such as cats, dogs, and horses, can also become colonized and infected by MRSA. Here, we demonstrate that a shared population of an important and globally disseminated lineage of MRSA can infect both humans and companion animals without undergoing host adaptation. This suggests that companion animals might act as a reservoir for human infections. We also show that the isolates from companion animals have differences in the presence of certain antibiotic resistance genes. This study furthers the “one health” view of infectious diseases by demonstrating that the pool of MRSA isolates in the human and animal populations are shared and highlights how different antibiotic usage patterns between human and veterinary medicine can shape the population of bacterial pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) is major problem in human medicine. Companion animals, such as cats, dogs, and horses, can also become colonized and infected by MRSA. Here, we demonstrate that a shared population of an important and globally disseminated lineage of MRSA can infect both humans and companion animals without undergoing host adaptation. This suggests that companion animals might act as a reservoir for human infections. We also show that the isolates from companion animals have differences in the presence of certain antibiotic resistance genes. This study furthers the “one health” view of infectious diseases by demonstrating that the pool of MRSA isolates in the human and animal populations are shared and highlights how different antibiotic usage patterns between human and veterinary medicine can shape the population of bacterial pathogens.


Nature Communications | 2015

Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission

Gavin K. Paterson; Ewan M. Harrison; Gemma Gr Murray; John J. Welch; James H Warland; Matthew T. G. Holden; Fiona J. E. Morgan; Xiaoliang Ba; G. Koop; Simon R. Harris; Duncan J. Maskell; Sharon J. Peacock; Michael E. Herrtage; Julian Parkhill; Mark A. Holmes

Genome sequencing is revolutionizing clinical microbiology and our understanding of infectious diseases. Previous studies have largely relied on the sequencing of a single isolate from each individual. However, it is not clear what degree of bacterial diversity exists within, and is transmitted between individuals. Understanding this ‘cloud of diversity’ is key to accurate identification of transmission pathways. Here, we report the deep sequencing of methicillin-resistant Staphylococcus aureus among staff and animal patients involved in a transmission network at a veterinary hospital. We demonstrate considerable within-host diversity and that within-host diversity may rise and fall over time. Isolates from invasive disease contained multiple mutations in the same genes, including inactivation of a global regulator of virulence and changes in phage copy number. This study highlights the need for sequencing of multiple isolates from individuals to gain an accurate picture of transmission networks and to further understand the basis of pathogenesis.


Journal of Antimicrobial Chemotherapy | 2014

Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England

Gavin K. Paterson; Fiona J. E. Morgan; Ewan M. Harrison; Edward J. P. Cartwright; Mili Estee Torok; Ruth N. Zadoks; Julian Parkhill; Sharon J. Peacock; Mark A. Holmes

Objectives There are limited data available on the epidemiology and prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the human population that encode the recently described mecA homologue, mecC. To address this knowledge gap we undertook a prospective prevalence study in England to determine the prevalence of mecC among MRSA isolates. Patients and methods Three hundred and thirty-five sequential MRSA isolates from individual patients were collected from each of six clinical microbiology laboratories in England during 2011–12. These were tested by PCR or genome sequencing to differentiate those encoding mecA and mecC. mecC-positive isolates were further characterized by multilocus sequence typing, spa typing, antimicrobial susceptibility profile and detection of PBP2a using commercially available kits. Results Nine out of the 2010 MRSA isolates tested were mecC positive, indicating a prevalence among MRSA in England of 0.45% (95% CI 0.24%–0.85%). The remainder were mecA positive. Eight out of these nine mecC MRSA isolates belonged to clonal complex 130, the other being sequence type 425. Resistance to non-β-lactam antibiotics was rare among these mecC MRSA isolates and all were phenotypically identified as MRSA using oxacillin and cefoxitin according to BSAC disc diffusion methodology. However, all nine mecC isolates gave a negative result using three different commercial PBP2a detection assays. Conclusions mecC MRSA are currently rare among MRSA isolated from humans in England and this study provides an important baseline prevalence rate to monitor future changes, which may be important given the increasing prevalence of mecC MRSA reported in Denmark.


Antimicrobial Agents and Chemotherapy | 2013

A Staphylococcus xylosus Isolate with a new mecC allotype

Ewan M. Harrison; Gavin K. Paterson; Matthew T. G. Holden; Fiona J. E. Morgan; Anders Rhod Larsen; Andreas Petersen; Sabine Leroy; Sarne De Vliegher; Vincent Perreten; L.K. Fox; T.J.G.M. Lam; Sampimon Oc; Ruth N. Zadoks; Sharon J. Peacock; Julian Parkhill; Mark A. Holmes

ABSTRACT Recently, a novel variant of mecA known as mecC (mecALGA251) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified a Staphylococcus xylosus isolate that harbors a new allotype of the mecC gene, mecC1. Whole-genome sequencing revealed that mecC1 forms part of a class E mec complex (mecI-mecR1-mecC1-blaZ) located at the orfX locus as part of a likely staphylococcal cassette chromosome mec element (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec.


Journal of Antimicrobial Chemotherapy | 2014

A novel hybrid SCCmec-mecC region in Staphylococcus sciuri

Ewan M. Harrison; Gavin K. Paterson; Matthew T. G. Holden; Xiaoliang Ba; Joana Rolo; Fiona J. E. Morgan; Bruno Pichon; Angela M. Kearns; Ruth N. Zadoks; Sharon J. Peacock; Julian Parkhill; Mark A. Holmes

Objectives Methicillin resistance in Staphylococcus spp. results from the expression of an alternative penicillin-binding protein 2a (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA known as mecC (formerly mecALGA251) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified two Staphylococcus sciuri subsp. carnaticus isolates from bovine infections that harbour three different mecA homologues: mecA, mecA1 and mecC. Methods We subjected the two isolates to whole-genome sequencing to further understand the genetic context of the mec-containing region. We also used PCR and RT–PCR to investigate the excision and expression of the SCCmec element and mec genes, respectively. Results Whole-genome sequencing revealed a novel hybrid SCCmec region at the orfX locus consisting of a class E mec complex (mecI-mecR1-mecC1-blaZ) located immediately downstream of a staphylococcal cassette chromosome mec (SCCmec) type VII element. A second SCCmec attL site (attL2), which was imperfect, was present downstream of the mecC region. PCR analysis of stationary-phase cultures showed that both the SCCmec type VII element and a hybrid SCCmec-mecC element were capable of excision from the genome and forming a circular intermediate. Transcriptional analysis showed that mecC and mecA, but not mecA1, were both expressed in liquid culture supplemented with oxacillin. Conclusions Overall, this study further highlights that a range of staphylococcal species harbour the mecC gene and furthers the view that coagulase-negative staphylococci associated with animals may act as reservoirs of antibiotic resistance genes for more pathogenic staphylococcal species.


PLOS Pathogens | 2012

Attenuated Salmonella Typhimurium Lacking the Pathogenicity Island-2 Type 3 Secretion System Grow to High Bacterial Numbers inside Phagocytes in Mice

Andrew J. Grant; Fiona J. E. Morgan; Trevelyan J. McKinley; Gemma L. Foster; Duncan J. Maskell; Pietro Mastroeni

Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.


Journal of Antimicrobial Chemotherapy | 2014

Prevalence and properties of mecC methicillin-resistant Staphylococcus aureus (MRSA) in bovine bulk tank milk in Great Britain

Gavin K. Paterson; Fiona J. E. Morgan; Ewan M. Harrison; Sharon J. Peacock; Julian Parkhill; Ruth N. Zadoks; Mark A. Holmes

Objectives mecC methicillin-resistant Staphylococcus aureus (MRSA) represent a newly recognized form of MRSA, distinguished by the possession of a divergent mecA homologue, mecC. The first isolate to be identified came from bovine milk, but there are few data on the prevalence of mecC MRSA among dairy cattle. The aim of this study was to conduct a prevalence study of mecC MRSA among dairy farms in Great Britain. Methods Test farms were randomly selected by random order generation and bulk tank samples were tested for the presence of mecC MRSA by broth enrichment and plating onto chromogenic agar. All MRSA isolated were screened by PCR for mecA and mecC, and mecC MRSA were further characterized by multilocus sequence typing, spa typing and antimicrobial susceptibility testing. Results mecC MRSA were detected on 10 of 465 dairy farms sampled in England and Wales (prevalence 2.15%, 95% CI 1.17%–3.91%), but not from 625 farms sampled in Scotland (95% CI of prevalence 0%–0.61%). Seven isolates belonged to sequence type (ST) 425, while the other three belonged to clonal complex 130. Resistance to non-β-lactam antibiotics was uncommon. All 10 isolates produced a negative result by slide agglutination for penicillin-binding protein 2a. mecA MRSA ST398 was detected on one farm in England. Conclusions mecC MRSA is widely distributed among dairy farms in Great Britain, but this distribution is not uniform across the whole country. These results provide an important baseline dataset to monitor the epidemiology of this emerging form of MRSA.


Infection and Immunity | 2011

In Vivo Regulation of the Vi Antigen in Salmonella and Induction of Immune Responses with an In Vivo-Inducible Promoter

Carole Janis; Andrew J. Grant; Trevelyan J. McKinley; Fiona J. E. Morgan; Victoria John; Jenny Houghton; Robert A. Kingsley; Gordon Dougan; Pietro Mastroeni

ABSTRACT Salmonella enterica serovar Typhi, the agent of typhoid fever in humans, expresses the surface Vi polysaccharide antigen that contributes to virulence. However, Vi expression can also be detrimental to some key steps of S. Typhi infectivity, for example, invasion, and Vi is the target of protective immune responses. We used a strain of S. Typhimurium carrying the whole Salmonella pathogenicity island 7 (SPI-7) to monitor in vivo Vi expression within phagocytic cells of mice at different times after systemic infection. We also tested whether it is possible to modulate Vi expression via the use of in vivo-inducible promoters and whether this would trigger anti-Vi antibodies through the use of Vi-expressing live bacteria. Our results show that Vi expression in the liver and spleen is downregulated with the progression of infection and that the Vi-negative population of bacteria becomes prevalent by day 4 postinfection. Furthermore, we showed that replacing the natural tviA promoter with the promoter of the SPI-2 gene ssaG resulted in sustained Vi expression in the tissues. Intravenous or oral infection of mice with a strain of S. Typhimurium expressing Vi under the control of the ssaG promoter triggered detectable levels of all IgG subclasses specific for Vi. Our work highlights that Vi is downregulated in vivo and provides proof of principle that it is possible to generate a live attenuated vaccine that induces Vi-specific antibodies after single oral administration.


PLOS Pathogens | 2012

The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella.

David M. Bulmer; Lubna Kharraz; Andrew J. Grant; Paul Dean; Fiona J. E. Morgan; Michail H. Karavolos; Anne C. Doble; Emma J. McGhie; Vassilis Koronakis; Richard A. Daniel; Pietro Mastroeni; C. M. Anjam Khan

Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.


Infection and Immunity | 2011

Enhanced Virulence of Salmonella enterica Serovar Typhimurium after Passage through Mice

Pietro Mastroeni; Fiona J. E. Morgan; Trevelyan J. McKinley; Ewan Shawcroft; Simon Clare; Duncan J. Maskell; Andrew J. Grant

ABSTRACT The interaction between Salmonella enterica and the host immune system is complex. The outcome of an infection is the result of a balance between the in vivo environment where the bacteria survive and grow and the regulation of fitness genes at a level sufficient for the bacteria to retain their characteristic rate of growth in a given host. Using bacteriological counts from tissue homogenates and fluorescence microscopy to determine the spread, localization, and distribution of S. enterica in the tissues, we show that, during a systemic infection, S. enterica adapts to the in vivo environment. The adaptation becomes a measurable phenotype when bacteria that have resided in a donor animal are introduced into a recipient naïve animal. This adaptation does not confer increased resistance to early host killing mechanisms but can be detected as an enhancement in the bacterial net growth rate later in the infection. The enhanced growth rate is lost upon a single passage in vitro, and it is therefore transient and not due to selection of mutants. The adapted bacteria on average reach higher intracellular numbers in individual infected cells and therefore have patterns of organ spread different from those of nonadapted bacteria. These experiments help in developing an understanding of the influence of passage in a host on the fitness and virulence of S. enterica.

Collaboration


Dive into the Fiona J. E. Morgan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge