Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Firas S. Zetoune is active.

Publication


Featured researches published by Firas S. Zetoune.


Nature Medicine | 2006

Generation of C5a in the absence of C3: a new complement activation pathway.

Markus Huber-Lang; J. Vidya Sarma; Firas S. Zetoune; Daniel Rittirsch; Thomas A. Neff; Stephanie R. McGuire; John D. Lambris; Roscoe L. Warner; Michael A. Flierl; Laszlo M. Hoesel; Florian Gebhard; John G. Younger; Scott M. Drouin; Rick A. Wetsel; Peter A. Ward

Complement-mediated tissue injury in humans occurs upon deposition of immune complexes, such as in autoimmune diseases and acute respiratory distress syndrome. Acute lung inflammatory injury in wild-type and C3−/− mice after deposition of IgG immune complexes was of equivalent intensity and was C5a dependent, but injury was greatly attenuated in Hc−/− mice (Hc encodes C5). Injury in lungs of C3−/− mice and C5a levels in bronchoalveolar lavage (BAL) fluids from these mice were greatly reduced in the presence of antithrombin III (ATIII) or hirudin but were not reduced in similarly treated C3+/+ mice. Plasma from C3−/− mice contained threefold higher levels of thrombin activity compared to plasma from C3+/+ mice. There were higher levels of F2 mRNA (encoding prothrombin) as well as prothrombin and thrombin protein in liver of C3−/− mice compared to C3+/+ mice. A potent solid-phase C5 convertase was generated using plasma from either C3+/+ or C3−/− mice. Human C5 incubated with thrombin generated C5a that was biologically active. These data suggest that, in the genetic absence of C3, thrombin substitutes for the C3-dependent C5 convertase. This linkage between the complement and coagulation pathways may represent a new pathway of complement activation.


Nature Medicine | 2008

Functional roles for C5a receptors in sepsis.

Daniel Rittirsch; Michael A. Flierl; Brian A. Nadeau; Danielle E. Day; Markus Huber-Lang; Charles R. Mackay; Firas S. Zetoune; Norma P. Gerard; Katherine Cianflone; Jörg Köhl; Craig Gerard; J. Vidya Sarma; Peter A. Ward

The function of the C5a receptors, C5ar (encoded by C5ar) and C5l2 (encoded by Gpr77), especially of C5l2, which was originally termed a default receptor, remains a controversial topic. Here we investigated the role of each receptor in the setting of cecal ligation and puncture–induced sepsis by using antibody-induced blockade of C5a receptors and knockout mice. In mid-grade sepsis (30–40% survival), blockade or absence of either C5ar or C5l2 greatly improved survival and attenuated the buildup of proinflammatory mediators in plasma. In vivo appearance or in vitro release of high mobility group box 1 protein (HMGB1) required C5l2 but not C5ar. In high-grade sepsis (100% lethality), the only protective condition was the combined blockade of C5l2 and C5ar. These data suggest that C5ar and C5l2 contribute synergistically to the harmful consequences in sepsis and that C5l2 is required for the release of HMGB1. Thus, contrary to earlier speculation, C5l2 is a functional receptor rather than merely a default receptor.


Nature | 2007

Phagocyte-derived catecholamines enhance acute inflammatory injury.

Michael A. Flierl; Daniel Rittirsch; Brian A. Nadeau; Anthony J. Chen; J. Vidya Sarma; Firas S. Zetoune; Stephanie R. McGuire; Rachel P. List; Danielle E. Day; L. Marco Hoesel; Hongwei Gao; Nico van Rooijen; Markus Huber-Lang; Richard R. Neubig; Peter A. Ward

It is becoming increasingly clear that the autonomic nervous system and the immune system demonstrate cross-talk during inflammation by means of sympathetic and parasympathetic pathways. We investigated whether phagocytes are capable of de novo production of catecholamines, suggesting an autocrine/paracrine self-regulatory mechanism by catecholamines during inflammation, as has been described for lymphocytes. Here we show that exposure of phagocytes to lipopolysaccharide led to a release of catecholamines and an induction of catecholamine-generating and degrading enzymes, indicating the presence of the complete intracellular machinery for the generation, release and inactivation of catecholamines. To assess the importance of these findings in vivo, we chose two models of acute lung injury. Blockade of α2-adrenoreceptors or catecholamine-generating enzymes greatly suppressed lung inflammation, whereas the opposite was the case either for an α2-adrenoreceptor agonist or for inhibition of catecholamine-degrading enzymes. We were able to exclude T cells or sympathetic nerve endings as sources of the injury-modulating catecholamines. Our studies identify phagocytes as a new source of catecholamines, which enhance the inflammatory response.


Journal of Clinical Investigation | 2002

Increased C5a receptor expression in sepsis

Niels C. Riedemann; Ren Feng Guo; Thomas A. Neff; Ines J. Laudes; Katie Keller; Vidya Sarma; Maciej M. Markiewski; Dimitrios Mastellos; Christoph W. Strey; Carl L. Pierson; John D. Lambris; Firas S. Zetoune; Peter A. Ward

Excessive production of the complement activation product C5a appears to be harmful during the development of sepsis in rodents. Little is known about the role of the C5a receptor (C5aR) and its presence in different organs during sepsis. Using the cecal ligation/puncture (CLP) model in mice, we show here that C5aR immunoreactivity was strikingly increased in lung, liver, kidney, and heart early in sepsis in both control and neutrophil-depleted mice. C5aR mRNA expression in these organs was also significantly increased during sepsis. Immunohistochemical analysis revealed patterns of increased C5aR expression in parenchymal cells in all four organs following CLP. Mice injected at the start of CLP with a blocking IgG to C5aR (alphaC5aR) showed dramatically improved survival when compared with animals receiving nonspecific IgG, as did mice injected with alphaC5a. In alphaC5aR-treated mice, serum levels of IL-6 and TNF-alpha and bacterial counts in various organs were significantly reduced during CLP when compared with control CLP animals. These studies demonstrate for the first time that C5aR is upregulated in lung, liver, kidney, and heart during the early phases of sepsis and that blockade of C5aR is highly protective from the lethal outcome of sepsis.


American Journal of Pathology | 2002

Generation of C5a by phagocytic cells

Markus Huber-Lang; Ellen M. Younkin; J. Vidya Sarma; Niels C. Riedemann; Stephanie R. McGuire; Kristina T. Lu; Robin G. Kunkel; John G. Younger; Firas S. Zetoune; Peter A. Ward

The complement activation product, C5a, is a powerful phlogistic factor. Using antibodies to detect human or rat C5a, incubation at pH 7.4 of human blood neutrophils or rat alveolar macrophages (AMs) with C5 in the presence of phorbol 12-myristate 13-acetate (PMA) led to generation of C5a. Rat AMs activated with lipopolysaccharide also generated C5a from C5. With activated neutrophils, extensive cleavage of C5 occurred, whereas activated macrophages had much more selective proteolytic activity for C5. Peripheral blood human or rat mononuclear cells and rat alveolar epithelial cells when stimulated with phorbol ester all failed to demonstrate an ability to cleave C5, suggesting a specificity of C5 cleavage by phagocytic cells. With rat AMs, C5a generation was time-dependent and was blocked if AMs were pretreated with inhibitors of transcription or protein synthesis (actinomycin D or cycloheximide). Similar treatment of activated human polymorphonuclear leukocytes only partially reduced C5a generation after addition of C5. C5a generated by activated AMs was biologically (chemotactically) active. This generation was sensitive to serine protease inhibitors but not to other classes of inhibitors. These data indicate that phagocytic cells, especially lung macrophages, can generate C5a from C5. In the context of the lung, this may represent an important C5a-generating pathway that is independent of the plasma complement system.


The FASEB Journal | 2008

Adverse functions of IL-17A in experimental sepsis

Michael A. Flierl; Daniel Rittirsch; Hongwei Gao; Laszlo M. Hoesel; Brian A. Nadeau; Danielle E. Day; Firas S. Zetoune; J. Vidya Sarma; Markus Huber-Lang; James L.M. Ferrara; Peter A. Ward

IL‐17A is a proinflammatory cytokine produced by a variety of cells. In the current study, we examined the role of IL‐17A in sepsis induced in mice by cecal ligation and puncture (CLP). IL‐17A levels, which rose time‐dependently in plasma after CLP, were not affected in the absence of αβ T cells or neutrophils. In sharp contrast, γδ T cell‐knockout or γδ T cell‐depleted mice displayed baseline IL‐17A plasma levels after CLP. Neutralization of IL‐17A by two different antibodies improved sepsis (survival from ~10% to nearly 60%). Unexpectedly, antibody treatment was protective, even when administration of anti‐IL‐17A was delayed for up to 12 h after CLP. These protective effects of IL‐17A blockade were associated with substantially reduced levels of bacteremia together with significant reductions of systemic proinflammatory cytokines and chemokines in plasma. In vitro incubation of mouse peritoneal macrophages with lipopolysaccharide (LPS) in the copresence of IL‐17A substantially increased the production of TNF‐α, IL‐1β, and IL‐6 by these cells. These data suggest that, during experimental sepsis, γδ T cell‐derived IL‐17A promotes high levels of proinflammatory mediators and bacteremia, resulting in enhanced lethality. IL‐17A may be a potential therapeutic target in sepsis.—Flierl, M. A., Rittirsch, D., Gao, H., Hoesel, L. M., Nadeau, B. A., Day, D. E., Zetoune, F. S., Sarma, J. V., Huber‐Lang, M. S., Ferrara, J. L. M., Ward, P. A. Adverse functions of IL‐17A in experimental sepsis. FASEB J. 22, 2198–2205 (2008)


The FASEB Journal | 2002

Protection of innate immunity by C5aR antagonist in septic mice

Markus Huber-Lang; Niels C. Riedeman; J. Vidya Sarma; Ellen M. Younkin; Stephanie R. McGuire; Ines J. Laudes; Kristina T. Lu; Ren Feng Guo; Thomas A. Neff; Vaishalee A. Padgaonkar; John D. Lambris; Lynn A. Spruce; Dimitrios Mastellos; Firas S. Zetoune; Peter A. Ward

Innate immune functions are known to be compromised during sepsis, often with lethal consequences. There is also evidence in rats that sepsis is associated with excessive complement activation and generation of the potent anaphylatoxin C5a. In the presence of a cyclic peptide antagonist (C5aRa) to the C5a receptor (C5aR), the binding of murine 125I‐C5a to murine neutrophils was reduced, the in vitro chemotactic responses of mouse neutrophils to mouse C5a were markedly diminished, the acquired defect in hydrogen peroxide (H2O2) production of C5a‐exposed neutrophils was reversed, and the lung permeability index (extravascular leakage of albumin) in mice after intrapulmonary deposition of IgG immune complexes was markedly diminished. Mice that developed sepsis after cecal ligation/puncture (CLP) and were treated with C5aRa had greatly improved survival rates. These data suggest that C5aRa interferes with neutrophil responses to C5a, preventing C5a‐induced compromise of innate immunity during sepsis, with greatly improved survival rates after CLP.—Huber‐Lang, M. S., Riedeman, N. C., Sarma, J. V., Younkin, E. M., McGuire, S. R., Laudes, I. J., Lu, K. T., Guo, R.‐F., Neff, T. A., Padgaonkar, V. A., Lambris, J. D., Spruce, L., Mastellos, D., Zetoune, F. S., Ward, P. A. Protection of innate immunity by C5aR antagonist in septic mice. FASEB J. 16, 1567–1574 (2002)


Journal of Immunology | 2002

Expression and Function of C5a Receptor in Mouse Microvascular Endothelial Cells

Ines J. Laudes; Jeffrey C. Chu; Markus Huber-Lang; Ren Feng Guo; Niels C. Riedemann; J. Vidya Sarma; Fakhri Mahdi; Hedwig S. Murphy; Cecilia L. Speyer; Kristina T. Lu; John D. Lambris; Firas S. Zetoune; Peter A. Ward

The complement-derived anaphylatoxin, C5a, is a potent phlogistic molecule that mediates its effects by binding to C5a receptor (C5aR; CD88). We now demonstrate specific binding of radiolabeled recombinant mouse C5a to mouse dermal microvascular endothelial cells (MDMEC) with a Kd50 of 3.6 nM and to ∼15,000–20,000 receptors/cell. Recombinant mC5a competed effectively with binding of [125I]rmC5a to MDMEC. Enhanced binding of C5a occurred, as well as increased mRNA for C5aR, after in vitro exposure of MDMEC to LPS, IFN-γ, or IL-6 in a time- and dose-dependent manner. By confocal microscopy, C5aR could be detected on surfaces of MDMEC using anti-C5aR Ab. In vitro expression of macrophage inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1) by MDMEC was also measured. Exposure of MDMEC to C5a or IL-6 did not result in changes in MIP-2 or MCP-1 production, but initial exposure of MDMEC to IL-6, followed by exposure to C5a, resulted in significantly enhanced production of MIP-2 and MCP-1 (but not TNF-α and MIP-1α). Although LPS or IFN-γ alone induced some release of MCP-1 and MIP-2, pre-exposure of these monolayers to LPS or IFN-γ, followed by addition of C5a, resulted in synergistic production of MIP-2 and MCP-1. Following i.v. infusion of LPS into mice, up-regulation of C5aR occurred in the capillary endothelium of mouse lung, as determined by immunostaining. These results support the hypothesis that C5aR expression on MDMEC and on the microvascular endothelium of lung can be up-regulated, suggesting that C5a in the co-presence of additional agonists may mediate pro-inflammatory effects of endothelial cells.


The FASEB Journal | 2003

Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis

Niels C. Riedemann; Ren Feng Guo; Travis J. Hollmann; Hongwei Gao; Thomas A. Neff; Jayne S. Reuben; Cecilia L. Speyer; J. Vidya Sarma; Rick A. Wetsel; Firas S. Zetoune; Peter A. Ward

Experimental sepsis in rodents occurring after cecal ligation/puncture (CLP) is associated with excessive complement activation and a systemic inflammatory response. The proinflammatory mediator IL‐6 has recently been shown to be an important inducer of the C5a receptor (C5aR) during sepsis. We now provide evidence that serum IL‐6 production during sepsis in rats was reduced in neutrophil‐depleted animals and that absence of C5aR in mice as well as antibody‐ blockade of C5a in rats significantly reduced serum levels of IL‐6 during sepsis. Lipopolysaccharide (LPS)‐induced production in vitro of IL‐6 by neutrophils was significantly enhanced in the co‐presence of C5a, likely due to transcriptional up‐regulation of IL‐6. Production of IL‐6 in neutrophils by LPS was NF‐κB dependent (but not on the presence of p50) and dependent on phosphorylation of p38‐mitogen activated protein kinase (MAPK) as well as p44/p42 MAPK (ERK1/2) but not on phosphorylation of c‐Jun N‐terminal kinases (JNK1/2). C5a stimulation of neutrophils elicited a rapid phosphorylation of ERK1/2 and p38 MAPK. Accordingly, we suggest that induction of IL‐6 after CLP is neutrophil and C5a/C5aR dependent, likely due to the ability of C5a to cause activation of ERK1/2 and p38 MAPK signaling pathways.


The FASEB Journal | 2005

Evidence for a functional role of the second C5a receptor C5L2

Hongwei Gao; Thomas A. Neff; Ren Feng Guo; Cecilia L. Speyer; J. Vidya Sarma; Scott A. Tomlins; Yunfang Man; Niels C. Riedemann; L. Marco Hoesel; Ellen M. Younkin; Firas S. Zetoune; Peter A. Ward

During experimental sepsis in rodents after cecal ligation and puncture (CLP), excessive C5a is generated, leading to interactions with C5aR, loss of innate immune functions of neutrophils, and lethality. In the current study, we have analyzed the expression of the second C5a receptor C5L2, the putative “default” or nonsignaling receptor for C5a. Rat C5L2 was cloned, and antibody was developed to C5L2 protein. After CLP, blood neutrophils showed a reduction in C5aR followed by its restoration, while C5L2 levels gradually increased, accompanied by the appearance of mRNA for C5L2. mRNA for C5L2 increased in lung and liver during CLP. Substantially increased C5L2 protein (defined by binding of 125I‐anti‐C5L2 IgG) occurred in lung, liver, heart, and kidney after CLP. With the use of serum IL‐6 as a marker for sepsis, infusion of anti‐C5aR dramatically reduced serum IL‐6 levels, while anti‐C5L2 caused a nearly fourfold increase in IL‐6 when compared with CLP controls treated with normal IgG. When normal blood neutrophils were stimulated in vitro with LPS and C5a, the antibodies had similar effects on release of IL‐6. These data provide the first evidence for a role for C5L2 in balancing the biological responses to C5a.

Collaboration


Dive into the Firas S. Zetoune's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Ward

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Peter A. Ward

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Flierl

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Hongwei Gao

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge