Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flaviana Bombarda de Andrade is active.

Publication


Featured researches published by Flaviana Bombarda de Andrade.


Journal of Endodontics | 2011

Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin.

Aldo del Carpio-Perochena; Clovis Monteiro Bramante; Marco Antonio Hungaro Duarte; Marcelo Haas Villas-Bôas; Márcia Sirlene Zardin Graeff; Norberti Bernardineli; Flaviana Bombarda de Andrade; Ronald Ordinola-Zapata

INTRODUCTION The aim of this study was to evaluate the biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. METHODS One hundred twenty bovine dentin specimens were infected intraorally by using a removable orthodontic device. Thirty samples were used for each irrigant solution: 2% chlorhexidine and 1%, 2.5%, and 5.25% sodium hypochlorite (NaOCl). The solutions were used for 5, 15, and 30 minutes and at 2 experimental volumes, 500 μL and 1 mL. The samples were stained by using acridine orange dye before and after the experiments and evaluated by using a confocal microscope. The percentage of biofilm, isolated cells, and noncolonized dentin was measured by using a grid system. Differences in the reduction or increase of the studied parameters were assessed by using nonparametric methods (P < .05). RESULTS The higher values of biofilm dissolution and noncolonized dentin were found in the 30-minute NaOCl group and in the 5-minute and 15-minute groups of 5.25% NaOCL. The use of 2% chlorhexidine solution did not improve the biofilm dissolution or increase the cleaning of the dentin in comparison with the NaOCl solutions (P < .05). CONCLUSIONS Two percent chlorhexidine does not dissolve the biofilms. Thirty minutes of NaOCl are necessary to have higher values of biofilm dissolution and to increase the cleaning of the dentin independently of the concentration in comparison with the 5-minute and 15-minute contact times.


Journal of Endodontics | 2011

Physical Properties and Interfacial Adaptation of Three Epoxy Resin–based Sealers

Marina Angélica Marciano; Bruno Martini Guimarães; Ronald Ordinola-Zapata; Clovis Monteiro Bramante; Roberto Brandão Garcia; Norberti Bernardineli; Flaviana Bombarda de Andrade; Ivaldo Gomes de Moraes; Marco Antonio Hungaro Duarte

INTRODUCTION The aim of the study was to evaluate the radiopacity, solubility, flow, film thickness, setting time, and adaptation to the root canal walls of 3 epoxy resin-based sealers: AH Plus, Acroseal, and Adseal. METHODS Physical tests were performed following American National Standards Institute/American Dental Associations requirements. For interfacial adaptation analysis, 30 maxillary canines were shaped by using ProTaper instruments. The specimens were divided into 3 groups (n = 10): group 1, AH Plus; group 2, Acroseal; and group 3, Adseal. The sealers were mixed with rhodamine B dye, and the canals were filled by using the lateral compaction technique. The percentage of gaps and voids area was calculated at 2, 4, and 6 mm levels from the apex. Statistical evaluation was performed by using analysis of variance for physical analysis and nonparametric Kruskal-Wallis and Dunn tests for interfacial adaptation (P < .05). RESULTS No statistical differences were found for adaptation, percentage of voids, solubility, flow, and film thickness among the sealers (P > .05). AH Plus was significantly more radiopaque (P < .05). For the setting time, there were statistical differences among all the studied sealers (P < .05). CONCLUSIONS AH Plus, Acroseal, and Adseal presented similar root canal adaptation, solubility, flow, and film thickness. Statistical differences were found for radiopacity and setting time (P < .05).


Acta Odontologica Scandinavica | 2013

The antimicrobial effect of new and conventional endodontic irrigants on intra-orally infected dentin

Ronald Ordinola-Zapata; Clovis Monteiro Bramante; Roberto Brandão Garcia; Flaviana Bombarda de Andrade; Norberti Bernardineli; Ivaldo Gomes de Moraes; Marco Antonio Hungaro Duarte

Abstract Objectives. To evaluate if the incorporation of antimicrobial compounds to chelating agents or the use of chelating agents with antimicrobial activity as 7% maleic acid and peracetic acid show similar disinfection ability in comparison to conventional irrigants as sodium hypochlorite or iodine potassium iodide against biofilms developed on dentin. Materials and methods. The total bio-volume of live cells, the ratio of live cells and the substratum coverage of dentin infected intra-orally and treated with the irrigant solutions: MTAD, Qmix, Smear Clear, 7% maleic acid, 2% iodine potassium iodide, 4% peracetic acid, 2.5% and 5.25% sodium hypochlorite was measured by using confocal microscopy and the live/dead technique. Five samples were used for each irrigant solution. Results. Several endodontic irrigants containing antimicrobials as clorhexidine (Qmix), cetrimide (Smear Clear), maleic acid, iodine compounds or antibiotics (MTAD) lacked an effective antibiofilm activity when the dentin was infected intra-orally. The irrigant solutions 4% peracetic acid and 2.5–5.25% sodium hypochlorite decrease significantly the number of live bacteria in biofilms, providing also cleaner dentin surfaces (p < 0.05). Conclusions. Several chelating agents containing antimicrobials could not remove nor kill significantly biofilms developed on intra-orally infected dentin, with the exception of sodium hypochlorite and 4% peracetic acid. Dissolution ability is mandatory for an appropriate eradication of biofilms attached to dentin.


International Journal of Paediatric Dentistry | 2011

Dental caries status and salivary properties of asthmatic children and adolescents

Mônica Paganini; Cássia Cilene Dezan; Thiago Rodrigo Bichaco; Flaviana Bombarda de Andrade; Alcindo Cerci Neto; Karen Barros Parron Fernandes

AIMS This study aimed to investigate the dental caries status and salivary properties in 3- to 15-year-old children/adolescents. METHODS The sample was split in two groups: asthma group (AG), composed of 65 patients who attended Public Health Service; asthma-free group (AFG), composed of 65 nonasthmatic children/adolescents recruited in two public schools. Stimulated salivary samples were collected for 3 min. Buffering capacity and pH were ascertained in each salivary sample. A single trained and calibrated examiner (kappa = 0.98) performed the dental caries examination according to WHO criteria. RESULTS The AFG showed salivary flow rate (1.10 ± 0.63 mL/min) higher (P = 0.002) than AG (0.80 ± 0.50 mL/min). An inverse relationship was observed between asthma severity and salivary flow rate (Phi coefficient, rφ: 0.79, P = 0.0001). Children with moderate or severe asthma showed an increased risk for reduced salivary flow rate (OR: 17.15, P < 0.001). No association was observed between drug use frequency (P > 0.05) and drug type (P > 0.05) with salivary flow rate. Buffering capacity was similar in both groups. No significant differences were encountered in dental caries experience between AFG and AG groups. CONCLUSIONS Although asthma can cause reduction in flow rate, the illness did not seem to influence dental caries experience in children with access to proper dental care.


Journal of Applied Oral Science | 2015

A new improved protocol for in vitro intratubular dentinal bacterial contamination for antimicrobial endodontic tests: standardization and validation by confocal laser scanning microscopy

Flaviana Bombarda de Andrade; Marcela Paola Castro Arias; Amanda Garcia Alves Maliza; Marco Antonio Hungaro Duarte; Márcia Sirlene Zardin Graeff; Pablo Andrés Amoroso-Silva; Raquel Zanin Midena; Ivaldo Gomes de Moraes

Objectives To compare three methods of intratubular contamination that simulate endodontic infections using confocal laser scanning microscopy (CLSM). Material and Methods Two pre-existing models of dentinal contamination were used to induce intratubular infection (groups A and B). These methods were modified in an attempt to improve the model (group C). Among the modifications it may be included: specimen contamination for five days, ultrasonic bath with BHI broth after specimen sterilization, use of E. faecalis during the exponential growth phase, greater concentration of inoculum, and two cycles of centrifugation on alternate days with changes of culture media. All specimens were longitudinally sectioned and stained with of LIVE/DEAD® for 20 min. Specimens were assessed using CLSM, which provided images of the depth of viable bacterial proliferation inside the dentinal tubules. Additionally, three examiners used scores to classify the CLSM images according to the following parameters: homogeneity, density, and depth of the bacterial contamination inside the dentinal tubules. Kruskal-Wallis and Dunn’s tests were used to evaluate the live and dead cells rates, and the scores obtained. Results The contamination scores revealed higher contamination levels in group C when compared with groups A and B (p<0.05). No differences were observed between group A and B (p>0.05). The volume of live cells in group C was higher than in groups A and B (p<0.05). Conclusion The new protocol for intratubular infection resulted in high and uniform patterns of bacterial contamination and higher cell viability in all specimens when compared with the current methods.


Journal of Endodontics | 2014

Influence of ultrasonic activation of 4 root canal sealers on the filling quality.

Bruno Martini Guimarães; Pablo Andrés Amoroso-Silva; Murilo Priori Alcalde; Marina Angélica Marciano; Flaviana Bombarda de Andrade; Marco Antonio Hungaro Duarte

INTRODUCTION The purpose of this study was to evaluate the effects of ultrasonic activation on the filling quality (intratubular sealer penetration, interfacial adaptation, and presence of voids) of 4 epoxy resin-based sealers. METHODS Eighty-four extracted human canines were divided into 4 groups (n = 20) according to the sealer used to obturate the root canals instrumented with F5 ProTaper instruments (50/05) (Dentsply Maillefer, Ballaigues, Switzerland). The canals were filled by the lateral compaction technique. Previously, the sealers were labeled with rhodamine B dye to allow analysis under a confocal microscope. At the time of obturation, the specimens were divided again into 2 groups (n = 10) according to the ultrasonic activation of the sealers: ultrasonically activated and nonultrasonically activated groups. All samples were sectioned at 2, 4, and 6 mm from the apex. The percentages of voids, gaps, and dentinal sealer penetration segments of the canal were analyzed. RESULTS Regarding the sealer penetration segments, there was a significant increase for the AH Plus (Dentsply Maillefer), Acroseal (Specialités Septodont, Saint Maur-des-Fossés, France), and Sealer 26 (Dentsply Maillefer) at the 4-mm level and the AH Plus and Sealer 26 at the 6-mm level with ultrasonic activation (P < .05). Concerning the gaps, the ultrasonic activation promoted a smaller presence for all sealers at the 4- and 6-mm levels (P < .05). No statistical significant differences were found for the percentages of voids (P < .05). CONCLUSIONS The use of ultrasonic activation of an epoxy resin-based sealer promoted greater dentinal sealer penetration and less presence of gaps.


Brazilian Dental Journal | 2014

Antimicrobial Activity and Synergism of Lactoferrin and Lysozyme Against Cariogenic Microorganisms

Flaviana Bombarda de Andrade; Jair Caetano de Oliveira; Marjorie Takei Yoshie; Bruno Martini Guimarães; Rafael B. Gonçalves; Waleska Dias Schwarcz

The present study evaluated the antimicrobial in vitro effects of the salivary proteins lactoferrin and lysozyme on microorganisms involved in the carious process, obtaining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Streptococcus mutans (ATCC 25175) and Lactobacillus casei (ATCC 7469) were submitted to broth macrodilution of lysozyme at 80 mg/mL and lactoferrin at 200 mg/mL. The tubes were read in a spectrophotometer after they had been incubated at 37 °C for 18 h, in a carbon dioxide chamber, in order to read the MIC. A new subculture was carried on agar plates to obtain the MBC. The agar diffusion method was also tested, using BHI agar with 100 µL of the standardized microbial inocula. Filter-paper disks soaked in 10 µL of the solutions lactoferrin (200 µg/mL) and lysozyme (80 µg/mL) were placed on the agar surface. Inhibition halos were not observed on the plates, showing the absence of the antimicrobial effects of these proteins in this method. The bactericidal and bacteriostatic effects of lysozyme on L. casei were 50.3 mg/mL and 43.1 mg/mL respectively. The bactericidal and bacteriostatic effects on S. mutans were 68.5 mg/mL and 58.7 mg/mL. Lactoferrin did not induce any inhibitory effects on any microorganism, even in the concentration of 200 mg/mL. There was not a synergic antimicrobial effect of proteins, when they were tested together, even in the concentration of 42.8 mg/mL of lysozyme and 114 mg/mL of lactoferrin (the highest values evaluated). S. mutans and L. casei were only inhibited by lysozyme, not affected by lactoferrin and by the synergic use of both proteins.


Journal of Applied Oral Science | 2011

Effect of green propolis addition to physical mechanical properties of glass ionomer cements

Valéria Barros Pereira Barbosa Troca; Karen Barros Parron Fernandes; Amélia Elena Terrile; Maria Cristina Marcucci; Flaviana Bombarda de Andrade; Linda Wang

Objective This study investigated the mechanical properties of glass ionomer cements (GICs) combined with propolis as a natural antimicrobial substance Material and Methods Typified green propolis, as an ethanolic extract (EEP) or in the lyophilized form (powder), was incorporated to specimens of Ketac Fil Plus, ChemFlex and Ketac Molar Easymix GICs. For each test, 8 specimens of each material were prepared. For water sorption and solubility tests, specimens were subjected to dehydration, hydration and re-dehydration cycles until a constant mass was obtained for each step. Measurements were recorded using a digital balance of 10-4 g precision. For the diametral tensile strength test, specimens were tested in a universal test machine at 0.5 mm/min crosshead speed after 24 h storage in deionized water. Data were evaluated by one-way ANOVA and Tukey’s tests (p<0.05). Results The addition of propolis to GIC clearly increased water sorption compared to pure material. Solubility was material-dependent and was not clearly evident. For the diametral tensile strength test, association with propolis altered negatively only Chemflex. Conclusion It may be concluded that incorporation of propolis to GICs alters some properties in a material-dependent condition.


Journal of Applied Oral Science | 2016

Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations

Talita Tartari; Luciano Bachmann; Amanda Garcia Alves Maliza; Flaviana Bombarda de Andrade; Marco Antonio Hungaro Duarte; Clovis Monteiro Bramante

ABSTRACT Sodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05). Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0.05). Intergroup differences were not observed in this ratio (p>0.05). Conclusions The increase in the exposure time and in the concentration of NaOCl solution lead to an increase in the tissue dissolution and dentin collagen deproteination. Furthermore, some carbonate ions are removed from the dentin inorganic phase by the NaOCl.


Journal of Applied Oral Science | 2016

Effect of ultrasonic streaming on intra-dentinal disinfection and penetration of calcium hydroxide paste in endodontic treatment

Marcela Paola Castro Arias; Amanda Garcia Alves Maliza; Raquel Zanin Midena; Márcia Sirlene Zardin Graeff; Marco Antonio Hungaro Duarte; Flaviana Bombarda de Andrade

ABSTRACT Objective The antimicrobial effect of ultrasonic agitation of calcium hydroxide (CH) pastes in infected bovine dentin and their penetrability were evaluated using confocal laser scanning microscopy (CLSM) and microbiological culture. Material and Methods Fifty-two bovine teeth were infected with Enterococcus faecalis using a new contamination protocol; then they received CH paste and were divided into groups with or without ultrasound. Ultrasonic agitation was conducted for 1 min with a plain point insert. After 15 d, the CLSM analyzed the viable and dead bacteria with Live and Dead assay. The dentinal wall debris was collected by burs, and the colony forming units (CFU/mL) were counted. The penetrability of the paste inside dentinal tubules was tested using the B-rodamine dye. Results The calcium hydroxide paste showed better results with the use of ultrasonic agitation (p<0.05). Conclusion The ultrasonic agitation of CH paste increased its antimicrobial action and was responsible for intradentinal penetration with the fulfilment of the tubules.

Collaboration


Dive into the Flaviana Bombarda de Andrade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Mara Maciel

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge