Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavio De Maio is active.

Publication


Featured researches published by Flavio De Maio.


Antimicrobial Agents and Chemotherapy | 2015

Antifungal Susceptibility Profiles of Bloodstream Yeast Isolates by Sensititre YeastOne over Nine Years at a Large Italian Teaching Hospital

Brunella Posteraro; Teresa Spanu; Barbara Fiori; Flavio De Maio; Elena De Carolis; Alessia Giaquinto; Valentina Prete; Giulia De Angelis; Riccardo Torelli; Tiziana D'Inzeo; Antonietta Vella; Alessio De Luca; Mario Tumbarello; Walter Ricciardi; Maurizio Sanguinetti

ABSTRACT Sensititre YeastOne (SYO) is an affordable alternative to the Clinical and Laboratory Standards Institute (CLSI) reference method for antifungal susceptibility testing. In this study, the MICs of yeast isolates from 1,214 bloodstream infection episodes, generated by SYO during hospital laboratory activity (January 2005 to December 2013), were reanalyzed using current CLSI clinical breakpoints/epidemiological cutoff values to assign susceptibility (or the wild-type [WT] phenotype) to systemic antifungal agents. Excluding Candida albicans (57.4% of all isolates [n = 1,250]), the most predominant species were Candida parapsilosis complex (20.9%), Candida tropicalis (8.2%), Candida glabrata (6.4%), Candida guilliermondii (1.6%), and Candida krusei (1.3%). Among the non-Candida species (1.9%), 7 were Cryptococcus neoformans and 17 were other species, mainly Rhodotorula species. Over 97% of Candida isolates were susceptible (WT phenotype) to amphotericin B and flucytosine. Rates of susceptibility (WT phenotype) to fluconazole, itraconazole, and voriconazole were 98.7% in C. albicans, 92.3% in the C. parapsilosis complex, 96.1% in C. tropicalis, 92.5% in C. glabrata, 100% in C. guilliermondii, and 100% (excluding fluconazole) in C. krusei. The fluconazole-resistant isolates consisted of 6 C. parapsilosis complex isolates, 3 C. glabrata isolates, 2 C. albicans isolates, 2 C. tropicalis isolates, and 1 Candida lusitaniae isolate. Of the non-Candida isolates, 2 C. neoformans isolates had the non-WT phenotype for susceptibility to fluconazole, whereas Rhodotorula isolates had elevated azole MICs. Overall, 99.7% to 99.8% of Candida isolates were susceptible (WT phenotype) to echinocandins, but 3 isolates were nonsusceptible (either intermediate or resistant) to caspofungin (C. albicans, C. guilliermondii, and C. krusei), anidulafungin (C. albicans and C. guilliermondii), and micafungin (C. albicans). However, when the intrinsically resistant non-Candida isolates were included, the rate of echinocandin nonsusceptibility reached 1.8%. In summary, the SYO method proved to be able to detect yeast species showing antifungal resistance or reduced susceptibility.


Journal of Clinical Microbiology | 2014

Performance of Two Resin-Containing Blood Culture Media in Detection of Bloodstream Infections and in Direct Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) Broth Assays for Isolate Identification: Clinical Comparison of the BacT/Alert Plus and Bactec Plus Systems

Barbara Fiori; Tiziana D'Inzeo; Flavio De Maio; Giulia De Angelis; Alessia Giaquinto; Lara Campana; Eloisa Tanzarella; Mario Tumbarello; Massimo Antonelli; Maurizio Sanguinetti; Teresa Spanu

ABSTRACT We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ≤5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization–time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine detection of BSIs in the population we studied, although further studies are needed to evaluate their performance in other settings.


PLOS ONE | 2016

PE_PGRS33 Contributes to Mycobacterium tuberculosis Entry in Macrophages through Interaction with TLR2

Ivana Palucci; Serena Camassa; Alessandro Cascioferro; Michela Sali; Saber Anoosheh; Antonella Zumbo; Mariachiara Minerva; Raffaella Iantomasi; Flavio De Maio; Gabriele Di Sante; Francesco Ria; Maurizio Sanguinetti; Giorgio Palù; Michael Brennan; Riccardo Manganelli; Giovanni Delogu

PE_PGRS represent a large family of proteins typical of pathogenic mycobacteria whose members are characterized by an N-terminal PE domain followed by a large Gly-Ala repeat-rich C-terminal domain. Despite the abundance of PE_PGRS-coding genes in the Mycobacterium tuberculosis (Mtb) genome their role and function in the biology and pathogenesis still remains elusive. In this study, we generated and characterized an Mtb H37Rv mutant (MtbΔ33) in which the structural gene of PE_PGRS33, a prototypical member of the protein family, was inactivated. We showed that this mutant entered macrophages with an efficiency up to ten times lower than parental or complemented strains, while its efficiency in infecting pneumocytes remained unaffected. Interestingly, the lack of PE_PGRS33 did not affect the intracellular growth of this mutant in macrophages. Using a series of functional deletion mutants of the PE_PGRS33 gene to complement the MtbΔ33 strain, we demonstrated that the PGRS domain is required to mediate cell entry into macrophages, with the key domain encompassing position 140–260 amino acids of PE_PGRS33. PE_PGRS33-mediated entry into macrophages was abolished in TLR2-deficient mice, as well as following treatment with wortmannin or an antibody against the complement receptor 3 (CR3), indicating that PE_PGRS33-mediated entry of Mtb in macrophages occurs through interaction with TLR2.


Journal of Clinical Microbiology | 2016

Multicenter Evaluation of Anyplex Plus MTB/NTM MDR-TB Assay for Rapid Detection of Mycobacterium tuberculosis Complex and Multidrug-Resistant Isolates in Pulmonary and Extrapulmonary Specimens

Michela Sali; Flavio De Maio; Francesca Caccuri; Federica Campilongo; Maurizio Sanguinetti; Simona Fiorentini; Giovanni Delogu; Cinzia Giagulli

ABSTRACT The rapid diagnosis of tuberculosis (TB) and the detection of drug-resistant Mycobacterium tuberculosis strains are critical for successful public health interventions. Therefore, TB diagnosis requires the availability of diagnostic tools that allow the rapid detection of M. tuberculosis and drug resistance in clinical samples. Here, we performed a multicenter study to evaluate the performance of the Seegene Anyplex MTB/NTM MDR-TB assay, a new molecular method based on a multiplex real-time PCR system, for detection of Mycobacterium tuberculosis complex (MTBC), nontuberculous mycobacteria (NTM), and genetic determinants of drug resistance. In total, the results for 755 samples (534 pulmonary and 221 extrapulmonary samples) were compared with the results of smears and cultures. For pulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 86.4% and 75.0%, respectively, and the specificities were 99% and 99.4%. For extrapulmonary specimens, the sensitivities of the Anyplex assay and acid-fast bacillus smear testing were 83.3% and 50.0%, respectively, and the specificities of both were 100%. The negative and positive predictive values of the Anyplex assay for pulmonary specimens were 97% and 100%, respectively, and those for extrapulmonary specimens were 84.6% and 100%. The sensitivities of the Anyplex assay for detecting isoniazid resistance in MTBC strains from pulmonary and extrapulmonary specimens were 83.3% and 50%, respectively, while the specificities were 100% for both specimen types. These results demonstrate that the Anyplex MTB/NTM MDR-TB assay is an efficient and rapid method for the diagnosis of pulmonary and extrapulmonary TB and the detection of isoniazid resistance.


PLOS ONE | 2014

Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria

Flavio De Maio; Giuseppe Maulucci; Mariachiara Minerva; Saber Anoosheh; Ivana Palucci; Raffaella Iantomasi; Valentina Palmieri; Serena Camassa; Michela Sali; Maurizio Sanguinetti; Wilbert Bitter; Riccardo Manganelli; Marco De Spirito; Giovanni Delogu

PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.


PLOS ONE | 2017

Immune characterization of the HBHA-specific response in Mycobacterium tuberculosis-infected patients with or without HIV infection

Teresa Chiacchio; Giovanni Delogu; Valentina Vanini; Gilda Cuzzi; Flavio De Maio; Carmela Pinnetti; Alessandro Sampaolesi; Andrea Antinori; Delia Goletti

Introduction RD1-based Interferon-γ Release Assays (IGRAs) cannot distinguish latent from active tuberculosis (TB) disease. Conversely, a positive response to heparin-binding haemagglutinin (HBHA)-based IGRAs, among TB-infected subjects, correlates with Mycobacterium tuberculosis (Mtb) containment and low risk of TB progression. The aim of this study was to characterize HBHA-immune responses in HIV-infected and uninfected subjects with active TB or latent TB infection (LTBI). Methods 49 subjects were prospectively enrolled: 22 HIV-uninfected (13 TB, 9 LTBI) and 27 HIV-infected (12 HIV-TB, 15 HIV-LTBI). Whole blood and peripheral blood mononuclear cells were stimulated with HBHA and RD1 antigens. Interferon (IFN)γ release was evaluated by ELISA whereas cytokine profile [IFNγ, tumor necrosis (TNF)α, interleukin (IL)2] and phenotype (CD45RA, CCR7) by flow cytometry. Results Among LTBI individuals, HBHA stimulation induced IFNγ release in all the HIV-uninfected, while, only 4/15 HIV-infected responded. Within the active TB, only 5/13 HIV-uninfected and 1/12 HIV-TB patients responded. Interestingly, by cytometry we showed that CD4+ T-cells response to HBHA was significantly impaired in the HIV-infected subjects with TB or LTBI compared to the HIV-uninfected subjects. The phenotype of HBHA-specific CD4 T-cells showed a predominantly central memory (CM) and effector memory (EM) phenotype without differences among the groups. Differently, HBHA-specific CD8+ T-cells, showed mainly a CM and naïve phenotype in LTBI group while TB, HIV-LTBI and HIV-TB groups were characterized by EM or terminally differentiated phenotypes. Interestingly, differently than what observed for RD1, the cytokine profile of HBHA-specific T-cells evaluated by cytometry showed that the CD4+ T-cells were mostly monofunctional. Conversely, CD8-specific T-cells were mostly monofunctional for both HBHA and RD1 stimulations. Conclusions These results characterize the impact of HIV infection in CD4- and CD8-specific response to HBHA in both LTBI and TB patients. HIV infection impairs the CD4 response to HBHA and likely this may lead to an impairment of TB control.


Journal of Clinical Microbiology | 2013

Comparative Evaluation of BD Phoenix and Vitek 2 Systems for Species Identification of Common and Uncommon Pathogenic Yeasts

Brunella Posteraro; Alberto Ruggeri; Elena De Carolis; Riccardo Torelli; Antonietta Vella; Flavio De Maio; Walter Ricciardi; Patrizia Posteraro; Maurizio Sanguinetti

ABSTRACT The BD Phoenix system was evaluated for species-level identification of yeasts (250 clinical isolates) and compared with the Vitek 2 system, using ribosomal internal transcribed spacer (ITS) sequence analysis as the gold standard. Considering only the species included in each systems database, 96.3% (236/245) and 91.4% (224/245) of the isolates were correctly identified by BD Phoenix and Vitek 2, respectively.


Frontiers in Cellular and Infection Microbiology | 2017

Impact of pe_pgrs33 gene polymorphisms on mycobacterium tuberculosis infection and pathogenesis

Serena Camassa; Ivana Palucci; Raffaella Iantomasi; Tiziana Cubeddu; Mariachiara Minerva; Flavio De Maio; Samuel Jouny; Elisa Petruccioli; Delia Goletti; Francesco Ria; Michela Sali; Maurizio Sanguinetti; Riccardo Manganelli; Stefano Rocca; Priscille Brodin; Giovanni Delogu

PE_PGRS33 is a surface-exposed protein of Mycobacterium tuberculosis (Mtb) which exerts its role in macrophages entry and immunomodulation. In this study, we aimed to investigate the polymorphisms in the pe_pgrs33 gene of Mtb clinical isolates and evaluate their impact on protein functions. We sequenced pe_pgrs33 in a collection of 135 clinical strains, genotyped by 15-loci MIRU-VNTR and spoligotyping and belonging to the Mtb complex (MTBC). Overall, an association between pe_pgrs33 alleles and MTBC genotypes was observed and a dN/dS ratio of 0.64 was obtained, suggesting that a purifying selective pressure is acting on pe_pgrs33 against deleterious SNPs. Among a total of 19 pe_pgrs33 alleles identified in this study, 5 were cloned and used to complement the pe_pgrs33 knock-out mutant strain of Mtb H37Rv (MtbΔ33) to assess the functional impact of the respective polymorphisms in in vitro infections of primary macrophages. In human monocyte-derived macrophages (MDMs) infection, large in-frame and frameshift mutations were unable to restore the phenotype of Mtb H37Rv, impairing the cell entry capacity of Mtb, but neither its intracellular replication rate nor its immunomodulatory properties. In vivo studies performed in the murine model of tuberculosis (TB) demonstrated that the MtbΔ33 mutant strain was not impaired in the ability to infect and replicate in the lung tissue compared to the parental strain. Interestingly, MtbΔ33 showed an enhanced virulence during the chronic steps of infection compared to Mtb H37Rv. Similarly, the complementation of MtbΔ33 with a frameshift allele also resulted in a Mtb strain capable of causing a surprisingly enhanced tissue damage in murine lungs, during the chronic steps of infection. Together, these results further support the role of PE_PGRS33 in the pathogenesis and virulence of Mtb.


Fems Immunology and Medical Microbiology | 2017

Evaluation of PE_PGRS33 as a potential surface target for humoral responses against Mycobacterium tuberculosis

Mariachiara Minerva; Flavio De Maio; Serena Camassa; Basem Battah; Palucci Ivana; Riccardo Manganelli; Maurizio Sanguinetti; Michela Sali; Giovanni Delogu

Mycobacterium tuberculosis (Mtb) PE_PGRS33 is a surface-exposed protein that was shown to interact with Toll-like receptor 2 on host macrophages to induce inflammatory signals and promote entry in macrophages. In this study, we investigated PE_PGRS33 as a potential target of a humoral response aimed at hampering key processes in tuberculosis pathogenesis. PE_PGRS33 protein was successfully expressed and purified under native condition in Escherichia coli. The purified protein retained its native functional and biological properties, showing the ability to elicit proinflammatory signals in murine and human macrophages. Interestingly, a polyclonal antiserum raised against native PE_PGRS33 showed no cross-reactions with other mycobacterial proteins. The anti-PE_PGRS33 serum was also able to inhibit Mtb entry into macrophages, but it did not reduce entry of the MtbΔpe_pgrs33 strain. Addition of native recombinant PE_PGRS33 to the MtbΔpe_pgrs33 strain during infection restored the Mtb wild-type entry phenotype in macrophage. Moreover, the anti-PE_PGRS33 serum was able to neutralize the proinflammatory activity of PE_PGRS33 in vitro. Furthermore, mice immunized with native recombinant PE_PGRS33, but not with a DNA vaccine expressing PE_PGRS33, were able to restrict M. smegmatis in vivo. These results highlight the potential use of PE_PGRS33 as a target of a neutralizing humoral response against tuberculosis.


PLOS ONE | 2018

Rapid and safe one-step extraction method for the identification of Brucella strains at genus and species level by MALDI-TOF mass spectrometry

Michela Sali; Flavio De Maio; Michela Tarantino; Giuliano Garofolo; M. Tittarelli; Lorena Sacchini; Katiuscia Zilli; Paolo Pasquali; Paola Petrucci; Cinzia Marianelli; Massimiliano Francia; Maurizio Sanguinetti; Rosanna Adone

Brucellosis is essentially a disease of domesticated livestock; however, humans can also be infected via the consumption of contaminated meat or dairy products, underlying the need for rapid and accurate identification methods. Procedures for microbiological identification and typing of Brucella spp. are expensive, time-consuming, and must be conducted in biohazard containment facilities to minimize operator risk. The development of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based assay has reduced the processing time while maintaining performance standards. In this study, to improve the identification accuracy and suitability of the MALDI-TOF-based assay for routine diagnosis, we developed a new protein extraction protocol and generated a custom reference database containing Brucella strains representative of the most widespread species. The reference library was then challenged with blind-coded field samples isolated from infected animals. The results indicated that the database could be used to correctly identify 99.5% and 97% of Brucella strains at the genus and species level, respectively, indicating that the performance of the assay was not affected by the different culture conditions used for microbial isolation. Moreover, the inactivated samples were stored and shipped to reference laboratories with no ill effect on protein stability, thus confirming the reliability of our method for routine diagnosis. Finally, we evaluated the epidemiological value of the protocol by comparing the clustering analysis results of Brucella melitensis strains obtained via multiple locus variable-number tandem repeat analysis or MALDI-TOF MS. The results showed that the MALDI-TOF assay could not decipher the true phylogenetic tree, suggesting that the protein profile did not correspond with the genetic evolution of Brucella.

Collaboration


Dive into the Flavio De Maio's collaboration.

Top Co-Authors

Avatar

Maurizio Sanguinetti

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Giovanni Delogu

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Michela Sali

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivana Palucci

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Mariachiara Minerva

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Serena Camassa

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Teresa Spanu

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Delia Goletti

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Antonietta Vella

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge