Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavio Meggio is active.

Publication


Featured researches published by Flavio Meggio.


The FASEB Journal | 2003

One-thousand-and-one substrates of protein kinase CK2?

Flavio Meggio; Lorenzo A. Pinna

CK2 (formerly termed “casein kinase 2”) is a ubiquitous, highly pleiotropic and constitutively active Ser/Thr protein kinase whose implication in neoplasia, cell survival, and virus infection is supported by an increasing number of arguments. Here an updated inventory of 307 CK2 protein substrates is presented. More than one‐third of these are implicated in gene expression and protein synthesis as being either transcriptional factors (60) or effectors of DNA/RNA structure (50) or translational elements. Also numerous are signaling proteins and proteins of viral origin or essential to virus life cycle. In comparison, only a minority of CK2 targets (a dozen or so) are classical metabolic enzymes. An analysis of 308 sites phosphorylated by CK2 highlights the paramount relevance of negatively charged side chains that are (by far) predominant over any other residues at positions n+3 (the most crucial one), n+1, and n+2. Based on this signature, it is predictable that proteins phosphorylated by CK2 are much more numerous than those identified to date, and it is possible that CK2 alone contributes to the generation of the eukaryotic phosphoproteome more so than any other individual protein kinase. The possibility that CK2 phosphosites play some global role, e.g., by destabilizing α helices, counteracting caspase cleavage, and generating adhesive motifs, will be discussed.—Meggio, F., Pinna, L. A. One‐thousand‐and‐one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003)


FEBS Letters | 2001

Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2').

Stefania Sarno; Helen Reddy; Flavio Meggio; Maria Ruzzene; Stephen P. Davies; Arianna Donella-Deana; David Shugar; Lorenzo A. Pinna

The specificity of 4,5,6,7‐tetrabromo‐2‐azabenzimidazole (TBB), an ATP/GTP competitive inhibitor of protein kinase casein kinase‐2 (CK2), has been examined against a panel of 33 protein kinases, either Ser/Thr‐ or Tyr‐specific. In the presence of 10 μM TBB (and 100 μM ATP) only CK2 was drastically inhibited (>85%) whereas three kinases (phosphorylase kinase, glycogen synthase kinase 3β and cyclin‐dependent kinase 2/cyclin A) underwent moderate inhibition, with IC50 values one–two orders of magnitude higher than CK2 (IC50=0.9 μM). TBB also inhibits endogenous CK2 in cultured Jurkat cells. A CK2 mutant in which Val66 has been replaced by alanine is much less susceptible to inhibition by TBB as well as by another ATP competitive inhibitor, emodin. These data show that TBB is a quite selective inhibitor of CK2, that can be used in cell‐based assays.


Cell | 2004

The Protein Kinase CK2 Facilitates Repair of Chromosomal DNA Single-Strand Breaks

Joanna I. Loizou; Sherif F. El-Khamisy; Anastasia Zlatanou; David J. Moore; Douglas W. Chan; Jun Qin; Stefania Sarno; Flavio Meggio; Lorenzo A. Pinna; Keith W. Caldecott

CK2 was the first protein kinase identified and is required for the proliferation and survival of mammalian cells. Here, we have identified an unanticipated role for CK2. We show that this essential protein kinase phosphorylates the scaffold protein XRCC1 and thereby enables the assembly and activity of DNA single-strand break repair protein complexes in vitro and at sites of chromosomal breakage. Moreover, we show that inhibiting XRCC1 phosphorylation by mutation of the CK2 phosphorylation sites or preventing CK2 activity using a highly specific inhibitor ablates the rapid repair of cellular DNA single-strand breaks by XRCC1. These data identify a direct role for CK2 in the repair of chromosomal DNA strand breaks and in maintaining genetic integrity.


Biochemical Journal | 2008

The selectivity of inhibitors of protein kinase CK2. An update.

Mario A. Pagano; Jenny Bain; Zygmunt Kazimierczuk; Stefania Sarno; Maria Ruzzene; Giovanni Di Maira; Matthew Elliott; Andrzej Orzeszko; Giorgio Cozza; Flavio Meggio; Lorenzo A. Pinna

CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis.


Pharmacology & Therapeutics | 2002

Toward the rational design of protein kinase casein kinase-2 inhibitors.

Stefania Sarno; Stefano Moro; Flavio Meggio; Giuseppe Zagotto; Diego Dal Ben; Paola Ghisellini; Roberto Battistutta; Giuseppe Zanotti; Lorenzo A. Pinna

Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions.


Journal of Biological Chemistry | 1998

Protein kinase CK2alpha' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation.

Maurizio Orlandini; Francesca Semplici; Rebecca Ferruzzi; Flavio Meggio; Lorenzo A. Pinna; Salvatore Oliviero

Protein kinase CK2 is an ubiquitous and pleiotropic Ser/Thr protein kinase composed of two catalytic (α and/or α′) and two noncatalytic (β) subunits forming a heterotetrameric holoenzyme involved in cell growth and differentiation. Here we report the identification, cloning, and oncogenic activity of the murine CK2α′ subunit. Serum treatment of quiescent mouse fibroblasts induces CK2α′ mRNA expression, which peaks at 4 h. The kinetics ofCK2α′ expression correlate with increased kinase activity toward a specific CK2 holoenzyme peptide substrate. The ectopic expression of CK2α′ (or CK2α) cooperates with Ha-ras in foci formation of rat primary embryo fibroblasts. Moreover, we observed that BALB/c 3T3 fibroblasts transformed with Ha-ras and CK2α′ show a faster growth rate than cells transformed with Ha-rasalone. In these cells the higher growth rate correlates with an increase in calmodulin phosphorylation, a protein substrate specifically affected by isolated CK2 catalytic subunits but not by CK2 holoenzyme, suggesting that unbalanced expression of a CK2 catalytic subunit synergizes with Ha-ras in cell transformation.


ChemBioChem | 2007

Tetrabromocinnamic Acid (TBCA) and Related Compounds Represent a New Class of Specific Protein Kinase CK2 Inhibitors

Mario A. Pagano; Giorgia Poletto; Giovanni Di Maira; Giorgio Cozza; Maria Ruzzene; Stefania Sarno; Jenny Bain; Matthew Elliott; Stefano Moro; Giuseppe Zagotto; Flavio Meggio; Lorenzo A. Pinna

Abnormally high constitutive activity of protein kinase CK2, levels of which are elevated in a variety of tumours, is suspected to underlie its pathogenic potential. The most widely employed CK2 inhibitor is 4,5,6,7‐tetrabromobenzotriazole (TBB), which exhibits a comparable efficacy toward another kinase, DYRK1 a. Here we describe the development of a new class of CK2 inhibitors, conceptually derived from TBB, which have lost their potency toward DYRK1 a. In particular, tetrabromocinnamic acid (TBCA) inhibits CK2 five times more efficiently than TBB (IC50 values 0.11 and 0.56 μM, respectively), without having any comparable effect on DYRK1 a (IC50 24.5 μM) or on a panel of 28 protein kinases. The usefulness of TBCA for cellular studies has been validated by showing that it reduces the viability of Jurkat cells more efficiently than TBB through enhancement of apoptosis. Collectively taken, the reported data support the view that suitably derivatized tetrabromobenzene molecules may provide powerful reagents for dissecting the cellular functions of CK2 and counteracting its pathogenic potentials.


Biochemical Journal | 2009

Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2

Giorgio Cozza; Marco Mazzorana; Elena Papinutto; Jenny Bain; Matthew Elliott; Giovanni Di Maira; Alessandra Gianoncelli; Mario A. Pagano; Stefania Sarno; Maria Ruzzene; Roberto Battistutta; Flavio Meggio; Stefano Moro; Giuseppe Zagotto; Lorenzo A. Pinna

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole).


Molecular and Cellular Biochemistry | 2005

Development and exploitation of CK2 inhibitors

Stefania Sarno; Maria Ruzzene; Pietrogiulio Frascella; Mario A. Pagano; Flavio Meggio; Alfonso Zambon; Marco Mazzorana; Giovanni Di Maira; Vittorio Lucchini; Lorenzo A. Pinna

A number of quite specific and fairly potent inhibitors of protein kinase CK2, belonging to the classes of condensed polyphenolic compounds, tetrabromobenzimidazole/triazole derivatives and indoloquinazolines are available to date. The structural basis for their selectivity is provided by a hydrophobic pocket adjacent to the ATP/GTP binding site, which in CK2 is smaller than in the majority of other protein kinases due to the presence of a number of residues whose bulky side chains are generally replaced by smaller ones. Consequently a doubly substituted CK2 mutant V66A,I174A is much less sensitive than CK2 wild type to these classes of inhibitors. The most efficient inhibitors both in terms of potency and selectivity are 4,5,6,7-tetrabromo-1H-benzotriazole, TBB (Ki = 0.4 μM), the TBB derivative 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole, DMAT (Ki = 0.040 μM), the emodin related coumarinic compound 8-hydroxy-4-methyl-9-nitrobenzo[g]chromen-2-one, NBC (Ki = 0.22 μM) and the indoloquinazoline derivative ([5-oxo-5,6-dihydroindolo-(1,2a)quinazolin-7-yl]acetic acid), IQA (Ki = 0.17 μM). These inhibitors are cell permeable as judged from ability to block CK2 in living cells and they have been successfully employed, either alone or in combination with CK2 mutants refractory to inhibition, to dissect signaling pathways affected by CK2 and to identify the endogenous substrates of this pleitropic kinase. By blocking CK2 these inhibitors display a remarkable pro-apoptotic efficacy on a number of tumor derived cell lines, a property which can be exploited in perspective to develop antineoplastic drugs.


Journal of Medicinal Chemistry | 2008

Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships.

Adriana Chilin; Roberto Battistutta; Andrea Bortolato; Giorgio Cozza; Samuele Zanatta; Giorgia Poletto; Marco Mazzorana; Giuseppe Zagotto; Eugenio Uriarte; Adriano Guiotto; Lorenzo A. Pinna; Flavio Meggio; Stefano Moro

Casein kinase 2 (CK2) is an ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Recently, using different virtual screening approaches, we have identified several novel CK2 inhibitors. In particular, we have discovered that coumarin moiety can be considered an attractive CK2 inhibitor scaffold. In the present work, we have synthetized and tested a small library of coumarins (more than 60), rationalizing the observed structure-activity relationship. Moreover, the most promising inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC), has been also crystallized in complex with CK2, and the experimental binding mode has been used to derive a linear interaction energy (LIE) model.

Collaboration


Dive into the Flavio Meggio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oriano Marin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge