Flor E. Acevedo
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Flor E. Acevedo.
Current Opinion in Plant Biology | 2015
Flor E. Acevedo; Loren J. Rivera-Vega; Seung Ho Chung; Swayamjit Ray; Gary W. Felton
Chewing herbivores cause massive damage when crushing plant tissues with their mandibles, thus releasing a vast array of cues that may be perceived by the plant to mobilize defenses. Besides releasing damage cues in wounded tissues, herbivores deposit abundant cues from their saliva, regurgitant and feces that trigger herbivore specific responses in plants. Herbivores can manipulate the perception mechanisms and defense signals to suppress plant defenses by secreting effectors and/or by exploiting their associated oral microbes. Recent studies indicate that both the composition of herbivore cues and the plants ability to recognize them are highly dependent upon the specific plant-herbivore system. There is a growing amount of work on identifying herbivore elicitors and effectors, but the most significant bottleneck in the discipline is the identification and characterization of plant receptors that perceive these herbivore-specific cues.
Molecular Plant-microbe Interactions | 2014
Wen-Po Chuang; Swayamjit Ray; Flor E. Acevedo; Michelle Peiffer; Gary W. Felton; Dawn S. Luthe
In addition to feeding damage, herbivores release cues that are recognized by plants to elicit defenses. Caterpillar oral secretions have been shown to trigger herbivore defense responses in several different plant species. In this study, the effects of two fall armyworm (Spodoptera frugiperda) oral secretions (saliva and regurgitant) on caterpillar defense responses in maize (Zea mays) were examined. Only minute amounts of regurgitant were deposited on the maize leaf during larval feeding bouts and its application to leaves failed to induce the expression of several herbivore defense genes. On the other hand, caterpillars consistently deposited saliva on leaves during feeding and the expression of several maize defense genes significantly increased in response to saliva application and larval feeding. However, feeding by ablated caterpillars with impaired salivation did not induce these defenses. Furthermore, bioassays indicated that feeding by unablated caterpillars significantly enhanced defenses when compared with that of ablated caterpillars. Another critical finding was that the maize genotype and stage of development affected the expression of defense genes in response to wounding and regurgitant treatments. These results demonstrate that fall armyworm saliva contains elicitors that trigger herbivore defenses in maize.
Journal of Chemical Ecology | 2015
Swayamjit Ray; Iffa Gaffor; Flor E. Acevedo; Anjel M. Helms; Wen-Po Chuang; John F. Tooker; Gary W. Felton; Dawn S. Luthe
Caterpillar behaviors such as feeding, crawling, and oviposition are known to induce defenses in maize and other plant species. We examined plant defense responses to another important caterpillar behavior, their defecation. Fall armyworms (FAW, Spodoptera frugiperda), a major threat to maize (Zea mays), are voracious eaters and deposit copious amounts of frass in the enclosed whorl tissue surrounding their feeding site, where it remains for long periods of time. FAW frass is composed of molecules derived from the host plant, the insect itself, and associated microbes, and hence provides abundant cues that may alter plant defense responses. We observed that proteins from FAW frass initially induced wound-responsive defense genes in maize; however, a pathogenesis-related (pr) defense gene was induced as the time after application increased. Elicitation of pathogen defenses by frass proteins was correlated with increased herbivore performance and reduced fungal pathogen performance over time. These responses differ from the typical plant response to oral secretions of the FAW. The results pave the way for identification of protein molecule(s) from the excretion of an herbivore that elicits pathogen defense responses while attenuating herbivore defenses in plants.
Molecular Plant-microbe Interactions | 2017
Flor E. Acevedo; Michelle Peiffer; Ching-Wen Tan; Bruce A. Stanley; Anne Stanley; Jie Wang; Asher G. Jones; Kelli Hoover; Cristina Rosa; Dawn S. Luthe; Gary W. Felton
Mechanical damage caused by insect feeding along with components present in insect saliva and oral secretions are known to induce jasmonic acid-mediated defense responses in plants. This study investigated the effects of bacteria from oral secretions of the fall armyworm Spodoptera frugiperda on herbivore-induced defenses in tomato and maize plants. Using culture-dependent methods, we identified seven different bacterial isolates belonging to the family Enterobacteriacea from the oral secretions of field-collected caterpillars. Two isolates, Pantoea ananatis and Enterobacteriaceae-1, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomato. A Raoultella sp. and a Klebsiella sp. downregulated POX but upregulated trypsin PI in this plant species. Conversely, all of these bacterial isolates upregulated the expression of the herbivore-induced maize proteinase inhibitor (mpi) gene in maize. Plant treatment with P. ananatis and Enterobacteriaceae-1 enhanced caterpillar growth on tomato but diminished their growth on maize plants. Our results highlight the importance of herbivore-associated microbes and their ability to mediate insect plant interactions differently in host plants fed on by the same herbivore.
Plant Physiology | 2016
Swayamjit Ray; Patrick Callegari Magnani Santos Alves; Imtiaz Ahmad; Iffa Gaffoor; Flor E. Acevedo; Michelle Peiffer; Shan Jin; Yang Han; Samina N. Shakeel; Gary W. Felton; Dawn S. Luthe
Maize chitinases, Pr4 and Endochitinase A, in fall armyworm frass suppress herbivore-induced defenses in maize. The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant’s defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems.
Current opinion in insect science | 2017
Loren J. Rivera-Vega; Flor E. Acevedo; Gary W. Felton
Lepidoptera herbivores deposit copious amounts of saliva when feeding. Their saliva is produced by the paired mandibular and labial glands and evidence indicates that it may play an important role in allowing an herbivore to establish on its host plant. Genomic studies of Lepidoptera saliva are beginning to reveal the role of saliva in herbivory. Molecules involved in digestion, detoxification, immunity, defense against plant secondary chemicals, chemoreception and so on have been identified using high throughput genomic tools. These genomic tools have also revealed changes that occur in Lepidoptera saliva when caterpillars feed on different host plants. However, there are other factors either biotic or abiotic (e.g., larval stage, larval health, temperature, water stress, etc.) that might also affect its composition. Though further functional and ecological studies are still necessary to fully understand the role of Lepidoptera saliva on herbivory, here we review current trends.
Insect Biochemistry and Molecular Biology | 2017
Flor E. Acevedo; Bruce A. Stanley; Anne Stanley; Michelle Peiffer; Dawn S. Luthe; Gary W. Felton
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races-corn and rice strains-of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.
Journal of Chemical Ecology | 2016
Swayamjit Ray; Saumik Basu; Loren J. Rivera-Vega; Flor E. Acevedo; Joe Louis; Gary W. Felton; Dawn S. Luthe
Plant defenses to insect herbivores have been studied in response to several insect behaviors on plants such as feeding, crawling, and oviposition. However, we have only scratched the surface about how insect feces induce plant defenses. In this study, we measured frass-induced plant defenses in maize, rice, cabbage, and tomato by chewing herbivores such as European corn borer (ECB), fall armyworm (FAW), cabbage looper (CL), and tomato fruit worm (TFW). We observed that caterpillar frass induced plant defenses are specific to each host-herbivore system, and they may induce herbivore or pathogen defense responses in the host plant depending on the composition of the frass deposited on the plant, the plant organ where it is deposited, and the species of insect. This study adds another layer of complexity in plant-insect interactions where analysis of frass-induced defenses has been neglected even in host-herbivore systems where naturally frass accumulates in enclosed feeding sites over extended periods of time.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Ching-Wen Tan; Michelle Peiffer; Kelli Hoover; Cristina Rosa; Flor E. Acevedo; Gary W. Felton
Significance The role of herbivore-associated microbes in mediating plant–herbivore interactions has gained recent attention. We show that a parasitoid associated with its caterpillar host not only suppresses the immune system of the caterpillar but also suppresses the induced defenses of the caterpillar’s host plant. Parasitoids inject eggs into their hosts but also inject polydnaviruses that suppress the caterpillar’s immunity. Immunosuppression enables eggs to hatch and develop as larvae within caterpillars. Additionally, the polydnavirus reduces salivary glucose oxidase, the primary elicitor found in the caterpillar’s oral secretions. Caterpillars injected with polydnavirus induce lower plant defenses than untreated caterpillars. Our results reveal a dimension to the complexity of plant–herbivore interactions indicating that polydnaviruses mediate the phenotypes of the parasitoid, herbivore, and plant. Obligate symbioses occur when organisms require symbiotic relationships to survive. Some parasitic wasps of caterpillars possess obligate mutualistic viruses called “polydnaviruses.” Along with eggs, wasps inject polydnavirus inside their caterpillar hosts where the hatching larvae develop inside the caterpillar. Polydnaviruses suppress the immune systems of their caterpillar hosts, which enables egg hatch and wasp larval development. It is unknown whether polydnaviruses also manipulate the salivary proteins of the caterpillar, which may affect the elicitation of plant defenses during feeding by the caterpillar. Here, we show that a polydnavirus of the parasitoid Microplitis croceipes, and not the parasitoid larva itself, drives the regulation of salivary enzymes of the caterpillar Helicoverpa zea that are known to elicit tomato plant-defense responses to herbivores. The polydnavirus suppresses glucose oxidase, which is a primary plant-defense elicitor in the saliva of the H. zea caterpillar. By suppressing plant defenses, the polydnavirus allows the caterpillar to grow at a faster rate, thus improving the host suitability for the parasitoid. Remarkably, polydnaviruses manipulate the phenotypes of the wasp, caterpillar, and host plant, demonstrating that polydnaviruses play far more prominent roles in shaping plant–herbivore interactions than ever considered.
Journal of Chemical Ecology | 2018
Jie Wang; Mingyu Yang; Yuanyuan Song; Flor E. Acevedo; Kelli Hoover; Rensen Zeng; Gary W. Felton
Insect-associated microbes can contribute to the physiological and ecological functions of insects. Despite a few examples in beetles and piercing-sucking insects, the varied mechanisms of how insect-associated bacteria mediate plant-insect interactions are still not fully understood. The polyphagous herbivore Helicoverpa zea is a major agricultural pest that harbors certain microbes in their digestive systems. Enterobacter ludwigii is one of the gut-associated bacteria identified from field-collected caterpillars, and it has been shown to indirectly induce defenses in the dicot plant tomato by triggering the biosynthesis of salivary elicitors, but there are no clear mechanisms to show how gut microbes alter these salivary cues and how a different host plant responds to these inducible elicitors. Here, we conducted a series of assays to determine whether infection with E. ludwigii affects H. zea larval growth, immunity, and salivary responses and thus influences induced defenses of maize to herbivory. Inoculating lab-reared caterpillars with E. ludwigii, did not significantly affect the growth of caterpillars, but two immunity-related genes glucose oxidase (GOX) and lysozyme (LYZ) were more highly expressed in both salivary glands and midguts compared with MgCl2 solution-treated caterpillars. Oral elicitors were evaluated for their role in triggering maize-specific defense responses. Our results show that saliva and its main component protein glucose oxidase (GOX) from E. ludwigii-inoculated caterpillars played a role in inducing maize anti-herbivore responses. These findings provide a novel concept that introducing bacteria to an herbivore may be an important approach to pest control through alteration of insect immune responses and thus indirect induction of plant resistance.