Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Peiffer is active.

Publication


Featured researches published by Michelle Peiffer.


Nature | 2002

Herbivory: caterpillar saliva beats plant defences.

Richard O. Musser; Sue M. Hum-Musser; Herb Eichenseer; Michelle Peiffer; Gary N. Ervin; J. Brad Murphy; Gary W. Felton

Blood-feeding arthropods secrete special salivary proteins that suppress the defensive reaction they induce in their hosts. This is in contrast to herbivores, which are thought to be helpless victims of plant defences elicited by their oral secretions. On the basis of the finding that caterpillar regurgitant can reduce the amount of toxic nicotine released by the tobacco plant Nicotiana tabacum, we investigate here whether specific salivary components from the caterpillar Helicoverpa zea might be responsible for this suppression. We find that the enzyme glucose oxidase counteracts the production of nicotine induced by the caterpillar feeding on the plant.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Herbivore exploits orally secreted bacteria to suppress plant defenses

Seung Ho Chung; Cristina Rosa; Erin D. Scully; Michelle Peiffer; John F. Tooker; Kelli Hoover; Dawn S. Luthe; Gary W. Felton

Significance The role of herbivore-associated microbes in modifying plant defenses has received scant attention. The Colorado potato beetle secretes symbiotic bacteria to wounds to manipulate plant defenses. The bacteria elicit salicylic acid (SA)-regulated defenses, and because SA signaling often negatively cross-talks with jasmonate signaling, plants are unable to fully activate their jasmonate-mediated resistance against the herbivore. From the plants’ perspective, they recognize herbivores not as such, but as microbial threats. We identified the specific bacteria from the beetle secretions and also characterized one of the bacterial effectors responsible for defense suppression. This clever, deceptive strategy for suppressing defenses has not been previously documented. Our results add a significant, unique concept to plant–insect interactions and how herbivores hijack plant defense signaling. Induced plant defenses in response to herbivore attack are modulated by cross-talk between jasmonic acid (JA)- and salicylic acid (SA)-signaling pathways. Oral secretions from some insect herbivores contain effectors that overcome these antiherbivore defenses. Herbivores possess diverse microbes in their digestive systems and these microbial symbionts can modify plant–insect interactions; however, the specific role of herbivore-associated microbes in manipulating plant defenses remains unclear. Here, we demonstrate that Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum). We found that antibiotic-untreated larvae decreased production of JA and JA-responsive antiherbivore defenses, but increased SA accumulation and SA-responsive gene expression. Beetles benefit from down-regulating plant defenses by exhibiting enhanced larval growth. In SA-deficient plants, suppression was not observed, indicating that suppression of JA-regulated defenses depends on the SA-signaling pathway. Applying bacteria isolated from larval oral secretions to wounded plants confirmed that three microbial symbionts belonging to the genera Stenotrophomonas, Pseudomonas, and Enterobacter are responsible for defense suppression. Additionally, reinoculation of these bacteria to antibiotic-treated larvae restored their ability to suppress defenses. Flagellin isolated from Pseudomonas sp. was associated with defense suppression. Our findings show that the herbivore exploits symbiotic bacteria as a decoy to deceive plants into incorrectly perceiving the threat as microbial. By interfering with the normal perception of herbivory, beetles can evade antiherbivore defenses of its host.


PLOS ONE | 2012

Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant.

Donglan Tian; Michelle Peiffer; Erica Shoemaker; John F. Tooker; Eric Haubruge; Frédéric Francis; Dawn S. Luthe; Gary W. Felton

Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts.


Journal of Chemical Ecology | 2006

Ablation of Caterpillar Labial Salivary Glands: Technique for Determining the Role of Saliva in Insect-Plant Interactions

Richard O. Musser; Edward E. Farmer; Michelle Peiffer; Spencer A. Williams; Gary W. Felton

There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillars spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillars survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.


PLOS ONE | 2012

ATP Hydrolyzing Salivary Enzymes of Caterpillars Suppress Plant Defenses

Shuang Wu; Michelle Peiffer; Dawn S. Luthe; Gary W. Felton

The oral secretions of herbivores are important recognition cues that can be used by plants to mediate induced defenses. In this study, a degradation of adenosine-5′-triphosphate (ATP) in tomato leaves was detected after treatment with Helicoverpa zea saliva. Correspondingly, a high level of ATPase activity in saliva was detected and three ATP hydrolyzing enzymes: apyrase, ATP synthase and ATPase 13A1 were identified in salivary glands. To determine the functions of these proteins in mediating defenses, they were cloned from H. zea and expressed in Escherichia coli. By applying the purified expressed apyrase, ATP synthase or ATPase 13A1 to wounded tomato leaves, it was determined that these ATP hydrolyzing enzymes suppressed the defensive genes regulated by the jasmonic acid and ethylene pathways in tomato plant. Suppression of glandular trichome production was also observed after treatment. Blood-feeding arthropods employ 5′-nucleotidase family of apyrases to circumvent host responses and the H. zea apyrase, is also a member of this family. The comparatively high degree of sequence similarity of the H. zea salivary apyrase with mosquito apyrases suggests a broader evolutionary role for salivary apyrases than previously envisioned.


PLOS ONE | 2014

Insights into the Saliva of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Pentatomidae)

Michelle Peiffer; Gary W. Felton

We examined the salivary gland structure of the brown marmorated stink bug (Pentatomidae: Halyomorpha halys) and developed methods for independent collection of watery saliva and sheath saliva. This stink bug has become a serious invasive pest of agriculture in the United States and its saliva is largely responsible for the damage it causes. We determined by protein gel analysis and shotgun proteomics that the suite of proteins comprising the sheath and watery saliva are very distinct. Our results indicate that a substantial amount of sheath proteins are derived from tomato when stink bugs feed on tomato fruit. Consequently, the sheath saliva is comprised of both insect and plant-derived proteins. Both sheath and watery saliva possessed amylase activities, but polyphenol oxidase and glucose oxidase activities were not detected in either saliva. Peroxidase activity was only detected in salivary sheaths, but only when stink bugs fed on tomato. Proteomic analysis indicated that the peroxidase was likely of plant origin. We also determined that sheath saliva, but not watery saliva elicited the jasmonate inducible defense gene proteinase inhibitor 2 (Pin2), but this induction was only observed when sheaths had been collected from tomato. This indicates that the eliciting factor of the saliva is likely of plant origin. Lastly, neither watery or sheath saliva affected the expression of the salicylate inducible gene pathogenesis related gene (Pr1a-P4).


New Phytologist | 2013

Host‐specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize

Joe Louis; Michelle Peiffer; Swayamjit Ray; Dawn S. Luthe; Gary W. Felton

Plants turn on induced defenses upon insect herbivory. In the current study, we evaluated the role of European corn borer (ECB) elicitors (molecules secreted by herbivores) that either induce/suppress defenses in Solanum lycopersicum (tomato) and Zea mays (maize), two very important crop plants that are grown for food and/or fuel throughout the world. We used a combination of molecular, biochemical, confocal and scanning electron microscopy, caterpillar spinneret ablation/cauterization, and conventional insect bioassay methods to determine the role of ECB elicitors in modulating defenses in both tomato and maize crop plants. Our results clearly demonstrate that the components present in the ECB saliva induce defense-related proteinase inhibitors in both tomato (PIN2) and maize (MPI). Presence of glucose oxidase in the ECB saliva induced defenses in tomato, but not in maize. However, ECB saliva induced genes present in the jasmonic acid biosynthesis pathway in both tomato and maize. Although ECB saliva can induce defenses in both tomato and maize, our results suggest that host-specific salivary components are responsible for inducing host plant defenses. Proteomic analysis of ECB salivary elicitors and plant receptors/signaling mechanisms involved in recognizing different ECB elicitors remains to be determined.


Planta | 2014

Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea

Donglan Tian; Michelle Peiffer; Consuelo M. De Moraes; Gary W. Felton

Inducible defenses that provide enhanced resistance to insect attack are nearly universal in plants. The defense-signaling cascade is mediated by the synthesis, movement, and perception of jasmonate (JA) and the interaction of this signaling molecule with other plant hormones and messengers. To explore how the interaction of JA and ethylene influences induced defenses, we employed the never-ripe (Nr) tomato mutant, which exhibits a partial block in ethylene perception, and the defenseless (def1) mutant, which is deficient in JA biosynthesis. The defense gene proteinase inhibitor (PIN2) was used as marker to compare plant responses. The Nr mutant showed a normal wounding response with PIN2 induction, but the def1 mutant did not. As expected, methyl JA (MeJA) treatment restored the normal wound response in the def1 mutant. Exogenous application of MeJA increased resistance to Helicoverpa zea, induced defense gene expression, and increased glandular trichome density on systemic leaves. Exogenous application of ethephon, which penetrates tissues and decomposes to ethylene, resulted in increased H. zea growth and interfered with the wounding response. Ethephon treatment also increased salicylic acid in systemic leaves. These results indicate that while JA plays the main role in systemic induced defense, ethylene acts antagonistically in this system to regulate systemic defense.


Molecular Plant-microbe Interactions | 2014

Herbivore Cues from the Fall Armyworm (Spodoptera frugiperda) Larvae Trigger Direct Defenses in Maize

Wen-Po Chuang; Swayamjit Ray; Flor E. Acevedo; Michelle Peiffer; Gary W. Felton; Dawn S. Luthe

In addition to feeding damage, herbivores release cues that are recognized by plants to elicit defenses. Caterpillar oral secretions have been shown to trigger herbivore defense responses in several different plant species. In this study, the effects of two fall armyworm (Spodoptera frugiperda) oral secretions (saliva and regurgitant) on caterpillar defense responses in maize (Zea mays) were examined. Only minute amounts of regurgitant were deposited on the maize leaf during larval feeding bouts and its application to leaves failed to induce the expression of several herbivore defense genes. On the other hand, caterpillars consistently deposited saliva on leaves during feeding and the expression of several maize defense genes significantly increased in response to saliva application and larval feeding. However, feeding by ablated caterpillars with impaired salivation did not induce these defenses. Furthermore, bioassays indicated that feeding by unablated caterpillars significantly enhanced defenses when compared with that of ablated caterpillars. Another critical finding was that the maize genotype and stage of development affected the expression of defense genes in response to wounding and regurgitant treatments. These results demonstrate that fall armyworm saliva contains elicitors that trigger herbivore defenses in maize.


Scientific Reports | 2017

Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

Seung Ho Chung; Erin D. Scully; Michelle Peiffer; Scott M. Geib; Cristina Rosa; Kelli Hoover; Gary W. Felton

Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

Collaboration


Dive into the Michelle Peiffer's collaboration.

Top Co-Authors

Avatar

Gary W. Felton

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Dawn S. Luthe

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kelli Hoover

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Cristina Rosa

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Flor E. Acevedo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John F. Tooker

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swayamjit Ray

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Donglan Tian

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jie Wang

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge