Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flora Iovino is active.

Publication


Featured researches published by Flora Iovino.


Cancer Research | 2009

Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature

Emmanuelle Charafe-Jauffret; Christophe Ginestier; Flora Iovino; Julien Wicinski; Nathalie Cervera; Pascal Finetti; Min-Hee Hur; Mark E. Diebel; Florence Monville; Julie Dutcher; Marthy Brown; Patrice Viens; Luc Xerri; François Bertucci; Giorgio Stassi; Gabriela Dontu; Daniel Birnbaum; Max S. Wicha

Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function, as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally, we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.


Cell Stem Cell | 2007

Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4

Matilde Todaro; Mileidys Perez Alea; Anna Barbara Di Stefano; Patrizia Cammareri; Louis Vermeulen; Flora Iovino; Claudio Tripodo; Antonio Russo; Gaspare Gulotta; Jan Paul Medema; Giorgio Stassi

A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.


Clinical Cancer Research | 2010

Aldehyde Dehydrogenase 1–Positive Cancer Stem Cells Mediate Metastasis and Poor Clinical Outcome in Inflammatory Breast Cancer

Emmanuelle Charafe-Jauffret; Christophe Ginestier; Flora Iovino; Carole Tarpin; Mark E. Diebel; Benjamin Esterni; Gilles Houvenaeghel; Jean Marc Extra; François Bertucci; Jocelyne Jacquemier; Luc Xerri; Gabriela Dontu; Giorgio Stassi; Yi Xiao; Sanford H. Barsky; Daniel Birnbaum; Patrice Viens; Max S. Wicha

Purpose: To examine the role of cancer stem cells (CSC) in mediating metastasis in inflammatory breast cancer (IBC) and the association of these cells with patient outcome in this aggressive type of breast cancer. Experimental Design: CSCs were isolated from SUM149 and MARY-X, an IBC cell line and primary xenograft, by virtue of increased aldehyde dehydrogenase (ALDH) activity as assessed by the ALDEFLUOR assay. Invasion and metastasis of CSC populations were assessed by in vitro and mouse xenograft assays. Expression of ALDH1 was determined on a retrospective series of 109 IBC patients and this was correlated with histoclinical data. All statistical tests were two sided. Log-rank tests using Kaplan-Meier analysis were used to determine the correlation of ALDH1 expression with development of metastasis and patient outcome. Results: Both in vitro and xenograft assays showed that invasion and metastasis in IBC are mediated by a cellular component that displays ALDH activity. Furthermore, expression of ALDH1 in IBC was an independent predictive factor for early metastasis and decreased survival in this patient population. Conclusions: These results suggest that the metastatic, aggressive behavior of IBC may be mediated by a CSC component that displays ALDH enzymatic activity. ALDH1 expression represents the first independent prognostic marker to predict metastasis and poor patient outcome in IBC. The results illustrate how stem cell research can translate into clinical practice in the IBC field. Clin Cancer Res; 16(1); 45–55


Oncogene | 2008

HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion

Hasan Korkaya; Amanda Paulson; Flora Iovino; Max S. Wicha

The cancer stem cell hypothesis proposes that cancers arise in stem/progenitor cells through disregulation of self-renewal pathways generating tumors, which are driven by a component of ‘tumor-initiating cells’ retaining stem cell properties. The HER2 gene is amplified in 20–30% of human breast cancers and has been implicated in mammary tumorigenesis as well as in mediating aggressive tumor growth and metastasis. We demonstrate that HER2 overexpression drives mammary carcinogenesis, tumor growth and invasion through its effects on normal and malignant mammary stem cells. HER2 overexpression in normal mammary epithelial cells (NMEC) increases the proportion of stem/progenitor cells as demonstrated by in vitro mammosphere assays and the expression of stem cell marker aldehyde dehydrogenase (ALDH) as well as by generation of hyperplastic lesions in humanized fat pads of NOD (nucleotide-binding oligomerization domain)/SCID (severe combined immunodeficient) mice. Overexpression of HER2 in a series of breast carcinoma cell lines increases the ALDH-expressing ‘cancer stem cell’ population which displays increased expression of stem cell regulatory genes, increased invasion in vitro and increased tumorigenesis in NOD/SCID mice. The effects of HER2 overexpression on breast cancer stem cells are blocked by trastuzumab in sensitive, but not resistant, cell lines, an effect mediated by the PI3-kinase/Akt pathway. These studies provide support for the cancer stem cell hypothesis by suggesting that the effects of HER2 amplification on carcinogenesis, tumorigenesis and invasion may be due to its effects on normal and malignant mammary stem/progenitor cells. Furthermore, the clinical efficacy of trastuzumab may relate to its ability to target the cancer stem cell population in HER2-amplified tumors.


Cell Stem Cell | 2014

CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.

Matilde Todaro; Miriam Gaggianesi; Veronica Catalano; Antonina Benfante; Flora Iovino; Mauro Biffoni; Tiziana Apuzzo; Isabella Sperduti; Silvia Volpe; Gianfranco Cocorullo; Gaspare Gulotta; Francesco Dieli; Ruggero De Maria; Giorgio Stassi

Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.


Journal of Immunology | 2009

Efficient Killing of Human Colon Cancer Stem Cells by γδ T Lymphocytes

Matilde Todaro; M. D'Asaro; Nadia Caccamo; Flora Iovino; Maria Giovanna Francipane; Serena Meraviglia; Valentina Orlando; Carmela La Mendola; Gaspare Gulotta; Alfredo Salerno; Francesco Dieli; Giorgio Stassi

Colon cancer comprises a small population of cancer stem cells (CSC) that is responsible for tumor maintenance and resistant to cancer therapies, possibly allowing for tumor recapitulation once treatment stops. We previously demonstrated that such chemoresistance is mediated by autocrine production of IL-4 through the up-regulation of antiapoptotic proteins. Several innate and adaptive immune effector cells allow for the recognition and destruction of cancer precursors before they constitute the tumor mass. However, cellular immune-based therapies have not been experimented yet in the population of CSCs. Here, we show that the bisphosphonate zoledronate sensitizes colon CSCs to Vγ9Vδ2 T cell cytotoxicity. Proliferation and production of cytokines (TNF-α and IFN-γ) and cytotoxic and apoptotic molecules (TRAIL and granzymes) were also induced after exposure of Vγ9Vδ2 T cells to sensitized targets. Vγ9Vδ2 T cell cytotoxicity was mediated by the granule exocytosis pathway and was highly dependent on isoprenoid production by of tumor cells. Moreover, CSCs recognition and killing was mainly TCR mediated, whereas NKG2D played a role only when tumor targets expressed several NKG2D ligands. We conclude that intentional activation of Vγ9Vδ2 T cells by zoledronate may substantially increase antitumor activities and represent a novel strategy for colon cancer immunotherapy.


Gastroenterology | 2011

Bone Morphogenetic Protein 4 Induces Differentiation of Colorectal Cancer Stem Cells and Increases Their Response to Chemotherapy in Mice

Ylenia Lombardo; Alessandro Scopelliti; Patrizia Cammareri; Matilde Todaro; Flora Iovino; Lucia Ricci Vitiani; Gaspare Gulotta; Francesco Dieli; Ruggero De Maria; Giorgio Stassi

BACKGROUND & AIMS The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal cancer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. METHODS CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immunoblot, and flow cytometry analyses. The potential therapeutic effect of BMP4 was assessed in immunocompromised mice after injection of CRC-SCs that responded to chemotherapy (n = 4) or that did not (n = 2). RESULTS CRC-SCs did not express BMP4 whereas differentiated cells did. Recombinant BMP4 promoted differentiation and apoptosis of CRC-SCs in 12 of 15 independent experiments; this effect did not depend on Small Mothers against decapentaplegic (Smad)4 expression level or microsatellite stability. BMP4 activated the canonical and noncanonical BMP signaling pathways, including phosphoInositide 3-kinase (PI3K) and PKB (protein kinase B)/AKT. Mutations in PI3K or loss of Phosphatase and Tensin homolog (PTEN) in Smad4-defective tumors made CRC-SCs unresponsive to BMP4. Administration of BMP4 to immunocompromised mice with tumors that arose from CRC-SCs increased the antitumor effects of 5-fluorouracil and oxaliplatin. CONCLUSIONS BMP4 promotes terminal differentiation, apoptosis, and chemosensitization of CRC-SCs in tumors that do not have simultaneous mutations in Smad4 and constitutive activation of PI3K. BMP4 might be developed as a therapeutic agent against cancer stem cells in advanced colorectal tumors.


Cancer Research | 2010

Tumorigenic and metastatic activity of human thyroid cancer stem cells

Matilde Todaro; Flora Iovino; Vincenzo Eterno; Patrizia Cammareri; Guido Gambara; Virginia Espina; Gaspare Gulotta; Francesco Dieli; Silvia Giordano; Ruggero De Maria; Giorgio Stassi

Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. We show that the tumorigenic capacity in thyroid cancer is confined in a small subpopulation of stem-like cells with high aldehyde dehydrogenase (ALDH(high)) activity and unlimited replication potential. ALDH(high) cells can be expanded indefinitely in vitro as tumor spheres, which retain the tumorigenic potential upon delivery in immunocompromised mice. Orthotopic injection of minute numbers of thyroid cancer stem cells recapitulates the behavior of the parental tumor, including the aggressive metastatic features of undifferentiated thyroid carcinomas, which are sustained by constitutive activation of cMet and Akt in thyroid cancer stem cells. The identification of tumorigenic and metastagenic thyroid cancer cells may provide unprecedented preclinical tools for development and preclinical validation of novel targeted therapies.


Cell Death & Differentiation | 2008

Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4

Matilde Todaro; Ylenia Lombardo; Maria Giovanna Francipane; M Perez Alea; Patrizia Cammareri; Flora Iovino; A. Di Stefano; C Di Bernardo; Antonino Agrusa; G Condorelli; Henning Walczak; Giorgio Stassi

We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.


Molecular Cancer | 2006

RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts

Flora Iovino; Laura Lentini; Angela Amato; Aldo Di Leonardo

BackgroundIncorrect segregation of whole chromosomes or parts of chromosome leads to aneuploidy commonly observed in cancer. The correct centrosome duplication, assuring assembly of a bipolar mitotic spindle, is essential for chromosome segregation fidelity and preventing aneuploidy. Alteration of p53 and pRb functions by expression of HPV16-E6 and E7 oncoproteins has been associated with centrosome amplification. However, these last findings could be the result of targeting cellular proteins in addition to pRb by HPV16-E7 oncoprotein. To get a more detailed picture on the role of pRb in chromosomal instability and centrosome amplification, we analyzed the effects of the acute loss of retinoblastoma gene function in primary conditional Rb deficient mouse embryonic fibroblasts (MEFs). Moreover, since pRb is a transcriptional repressor, microarray analysis was done on pRb-competent and pRb-deficient MEFs to evaluate changes in expression of genes for centrosome homeostasis and for correct mitosis.ResultsAcute loss of pRb induces centrosome amplification and aneuploidy in the vast majority of cells analyzed. A time course analysis shows a decrease of cells with amplified centrosomes after 40 days from the adenoviral infection. At this time only 12% of cells still show amplified centrosomes. Interestingly, cells with pRb constitutive loss show a similar percentage of cells with amplified centrosomes. DNA-Chip analyses in MEFs wt (mock infected) and pRb depleted (Ad-Cre infected) cells reveal differential expression of genes controlling both centrosome duplication and mitotic progression.ConclusionOur findings suggest a direct link between pRb status, centrosome amplification and chromosomal instability, and define specific mitotic genes as targets whose gene expression has to be altered to achieve or maintain aneuploidy.

Collaboration


Dive into the Flora Iovino's collaboration.

Top Co-Authors

Avatar

Giorgio Stassi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruggero De Maria

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge