Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Emmanuel is active.

Publication


Featured researches published by Florence Emmanuel.


Science | 1996

Protection Against Atherogenesis in Mice Mediated by Human Apolipoprotein A-IV

Nicolas Duverger; Günter Tremp; Jean-Michel Caillaud; Florence Emmanuel; Graciela Castro; Jean-Charles Fruchart; Armin Steinmetz; Patrice Denefle

Apolipoproteins are protein constituents of plasma lipid transport particles. Human apolipoprotein A-IV (apoA-IV) was expressed in the liver of C57BL/6 mice and mice deficient in apoE, both of which are prone to atherosclerosis, to investigate whether apoA-IV protects against this disease. In transgenic C57BL/6 mice on an atherogenic diet, the serum concentration of high density lipoprotein (HDL) cholesterol increased by 35 percent, whereas the concentration of endogenous apoA-I decreased by 29 percent, relative to those in transgenic mice on a normal diet. Expression of human apoA-IV in apoE-deficient mice on a normal diet resulted in an even more severe atherogenic lipoprotein profile, without affecting the concentration of HDL cholesterol, than that in nontransgenic apoE-deficient mice. However, transgenic mice of both backgrounds showed a substantial reduction in the size of atherosclerotic lesions. Thus, apoA-IV appears to protect against atherosclerosis by a mechanism that does not involve an increase in HDL cholesterol concentration.


Circulation | 1996

Inhibition of Atherosclerosis Development in Cholesterol-Fed Human Apolipoprotein A-I–Transgenic Rabbits

Nicolas Duverger; Howard S. Kruth; Florence Emmanuel; Jean-Michel Caillaud; Ce´line Viglietta; Graciela Castro; Anne Tailleux; Catherine Fievet; Jean Charles Fruchart; Louis Marie Houdebine; Patrice Denefle

BACKGROUND Prospective epidemiological studies support the hypothesis that high levels of high-density lipoprotein (HDL) cholesterol and apolipoprotein (apo) A-I limit atherosclerosis development. However, more data from studies with animal models of atherosclerosis that resemble the human disease are required to demonstrate the effect of apo A-I in the inhibition of atherogenesis. The rabbit is a good animal model for human atherosclerosis. METHODS AND RESULTS Human apo A-I-transgenic rabbits have been produced, and we have evaluated the effect of apo A-I on the development of atherosclerosis in transgenic rabbits fed a cholesterol-rich diet for 14 weeks. Plasma cholesterol levels of atherogenic apo B-containing lipoproteins were similar for transgenic and control rabbits (> 1000 mg/dL), while plasma levels of HDL cholesterol in the transgenic group were always about twice that of the control group (68 +/- 11 versus 37 +/- 3 mg/dL at 14 weeks; P < .001). At the end of the experiment, the amount of aortic surface area covered by lesions as well as the amount of lipid accumulation in the aorta were significantly less in transgenic rabbits compared with the control group (15 +/- 12% versus 30 +/- 8%, P < .0027 for the surface area of the thoracic aorta; 116 +/- 31 versus 247 +/- 39 mumol/g aorta, P < .0068 for cholesterol content in total aorta). CONCLUSIONS Overexpression of human apo A-I in rabbits inhibits the development of atherosclerosis in this animal model that resembles, in many respects, human atherosclerosis.


Circulation | 1999

Adenovirus-Mediated Overexpression of Tissue Inhibitor of Metalloproteinase-1 Reduces Atherosclerotic Lesions in Apolipoprotein E–Deficient Mice

Mustapha Rouis; C. Adamy; Nicolas Duverger; Philippe Lesnik; P. Horellou; Martine Moreau; Florence Emmanuel; J.M. Caillaud; P. M. Laplaud; C. Dachet; M. J. Chapman

BACKGROUND To define the role of metalloproteinases (MMPs) in the development of lipid-rich atherosclerotic lesions in relation to the balance between proteolytic and antiproteolytic activities, we investigated the impact of adenovirus-mediated elevation in the circulating levels of human tissue inhibitor of MMP (TIMP-1) in atherosclerosis-susceptible apolipoprotein E-deficient (apoE(-/-)) mice. METHODS AND RESULTS Infusion of apoE(-/-) mice fed a lipid-rich diet with rAd.RSV.TIMP-1 (1x10(11) viral particles) resulted in high hepatic expression of TIMP-1. At 2 weeks after injection, plasma TIMP-1 levels ranged from 7 to 24 micrograms/mL (mean 14.8+/-6.8). Marked overexpression of TIMP-1 was transient, with levels of TIMP-1 decreasing to 2.5 to 8 micrograms/mL (mean 4.3+/-2.1) at 4 weeks. Plasma lipid and lipoprotein levels in mice treated with rAd.RSV.TIMP-1 were similar to those treated with rAd.RSV.betaGal. However, rAd.RSV.TIMP-1-infused mice displayed a marked reduction (approximately 32%; P<0.05) in mean lesion area per section (512+/-121 micrometers(2)x10(3); n=12 sections from 4 animals) as compared with rAd.RSV.betaGal-infused mice (750+/-182 micrometers(2)x10(3); n=12 sections from 4 animals). Similarly, marked reduction in macrophage deposition as well as MMP-2, MMP-3, and MMP-13 antigens was observed. CONCLUSIONS Histological and immunohistologic analyses of atherosclerotic lesions revealed increases in collagen, elastin, and smooth muscle alpha-actin content in mice treated with rAd.RSV.TIMP-1. These qualitative and quantitative features were the consequence of TIMP-1 infiltration from plasma to arterial intima, as immunohistochemical analyses revealed an abundance of TIMP-1 specifically in lesions of rAd.RSV. TIMP-1-treated mice.


Circulation | 1999

Somatic Gene Transfer of Human ApoA-I Inhibits Atherosclerosis Progression in Mouse Models

Patrick Benoit; Florence Emmanuel; J.M. Caillaud; Laurent Bassinet; Graciela Castro; Pierre Gallix; Jean Charles Fruchart; Didier Branellec; Patrice Denefle; Nicolas Duverger

BACKGROUND Apolipoprotein (apo) A-I is the major component of HDL, and it displays antiatherogenic properties. METHODS AND RESULTS The human apoA-I gene has been transferred into different mouse models by use of a recombinant adenovirus under the control of an RSV-LTR promoter (AV RSV apoA-I). Administration of AV RSV apoA-I to C57BL/6 mice resulted in moderate expression of human apoA-I for 3 weeks, leading to a transient elevation (40% at day 11 after injection) of HDL cholesterol concentration. In contrast, administration of AV RSV apoA-I to human apoA-I-transgenic mice induced a large increase of human apoA-I and HDL cholesterol concentrations (300% and 360%, respectively, at day 14 after injection) for 10 weeks, indicating that an immune response to the transgene was one major hurdle for long-term duration of expression. Recombinant adenovirus expressing human apolipoprotein A-I (AV RSV apoA-I) was also injected into human apoA-I-transgenic/apoE-deficient mice, which are prone to develop atherosclerosis. Over a 6-week period, overexpression of human apoA-I inhibited fatty streak lesion formation by 56% in comparison with control. CONCLUSIONS Somatic gene transfer of human apoA-I prevents the development of atherosclerosis in the mouse model.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Complete Atherosclerosis Regression After Human ApoE Gene Transfer in ApoE-Deficient/Nude Mice

Caroline Desurmont; Jean-Michel Caillaud; Florence Emmanuel; Patrick Benoit; Jean Charles Fruchart; Graciela Castro; Didier Branellec; Jean-Michel Heard; Nicolas Duverger

The apolipoprotein E (apoE)-deficient mouse is a relevant animal model of human atherosclerosis. Although the prevention of atherosclerosis development has been documented after somatic gene transfer into animal models, regression of lesions remains to be demonstrated. Thus, we used this genetically defined mouse model nn the nude background to show atherosclerosis regression. ApoE-deficient nude mice were infected with 5 x 10(8) or 10(9) plaque-forming units of a first-generation adenovirus encoding human apoE cDNA. The secretion of human apoE resulted in a rapid decrease of total cholesterol, which normalized the hypercholesterolemic phenotype within 14 days (from 600+/-100 to <100 microg/mL). Transgene expression was observed during a period of >4 months, with a normalization of cholesterol and triglyceride levels during 5 months. At that time, we successfully reinjected the recombinant adenovirus and observed the appearance of the human protein as well as the correction of lipoprotein phenotype. In mice killed 6 months-after the first infection, we observed a dose-dependent regression of fatty streak lesions in the aorta. We showed sustained expression of a transgene with a first-generation adenoviral vector and a correction of dyslipoproteinemia phenotype leading to lesion regression. These data demonstrate that somatic gene transfer can induce plaque regression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1996

Transgenic Rabbits Expressing Human Apolipoprotein A-I in the Liver

Nicolas Duverger; Celine Viglietta; Laurence Berthou; Florence Emmanuel; Anne Tailleux; Laurence Parmentier-Nihoul; Bernard Laine; Catherine Fievet; Graciela Castro; Jean Charles Fruchart; Louis Marie Houbebine; Patrice Denefle

Human apolipoprotein A-I (apo A-I) transgenic rabbits were created by use of an 11-kb genomic human apo A-I construct containing a liver-specific promoter. Five independent transgenic lines were obtained in which human apo A-I gene had integrated and was expressed. Plasma levels of human apo A-I ranged from 8 to 100 mg/dL for the founder and up to 175 mg/dL for the progeny. Rabbit apo A-I levels were substantially decreased in the transgenic rabbits. HDL cholesterol (HDL-C) levels were higher in two of the five transgenic rabbit lines than in controls (line 20 versus nontransgenic littermate, HDL-C = 80 +/- 7 versus 37 +/- 6 mg/dL; line 8 versus nontransgenic littermate, HDL-C = 54 +/- 16 versus 35 +/- 6 mg/dL). This resulted in less atherogenic lipoprotein profiles, with very low (VLDL + LDL-C)/HDL-C ratios. HDL size and protein and lipid compositions were similar between transgenic and littermate nontransgenic rabbits. However, a large amount of pre-beta apo A-I-containing lipoproteins was observed in the plasma of the highest human apo A-I expressor. Cell cholesterol efflux was evaluated with the incubation of whole serum from transgenic and control rabbits. Cell cholesterol efflux was highly correlated with HDL cholesterol, with apo A-I, and with the presence of pre-beta apo A-I-containing lipoproteins. These rabbits will be an extremely useful model for the evaluation of the effect of increased hepatic apo A-I expression on atherosclerosis.


Biochimica et Biophysica Acta | 1997

Characterization of human apolipoprotein A-I expressed in Escherichia coli

Jean Bergeron; Philippe G. Frank; Florence Emmanuel; Martine Latta; Yuwei Zhao; Daniel L. Sparks; Eric Rassart; Patrice Denefle; Yves L. Marcel

Human apolipoprotein A-I (apoA-I), with an additional N-terminal extension (Met-Arg-Gly-Ser-(His)6-Met) (His-apoA-I), has been produced in Escherichia coli with a final yield after purification of 10 mg protein/1 of culture medium. We have characterized the conformation and structural properties of His-apoA-I in lipid-free form, and in reconstituted lipoproteins containing two apoA-I per particle (Lp2A-I) by both immunochemical and physicochemical techniques. The lipid-free forms of the two proteins present very similar secondary structure and stability, and have also very similar kinetics of association with dimyristoyl phosphatidylcholine. His-apoA-I and native apoA-I can be complexed with 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to form similar, stable, either discoidal or spherical (sonicated) Lp2A-I particles. Lipid-bound native apoA-I and His-apoA-I showed very similar alpha-helical content (69% and 66%, respectively in discoidal Lp2A-I and 54% and 51%, respectively in spherical Lp2A-I). The conformation of His-apoA-I in lipid-free form and in discoidal or spherical Lp2A-I has also been shown to be similar to native apoA-I by immunochemical measurements using 13 monoclonal antibodies recognizing distinct apoA-I epitopes. In the free protein and in reconstituted Lp2A-I, the N-terminal has no effect on the affinity of any of the monoclonal antibodies and minimal effect on immunoreactivity values. Small differences in the exposure of some apoA-I epitopes are evident on discoidal particles, while no difference is apparent in the expression of any epitope of apoA-I on spherical Lp2A-I. The presence of the N-terminal extension also has no effect on the reaction of LCAT with the discoidal Lp2A-I or on the ability of complexes to promote cholesterol efflux from fibroblasts in culture. In conclusion, we show that His-apoA-I expressed in E. coli exhibits similar physicochemical properties to native apoA-I and is also identical to the native protein in its ability to interact with phospholipids and to promote cholesterol esterification and cellular cholesterol efflux.


Journal of Biological Chemistry | 1998

Apolipoprotein(a) Yeast Artificial Chromosome Transgenic Rabbits LIPOPROTEIN(a) ASSEMBLY WITH HUMAN AND RABBIT APOLIPOPROTEIN B

Didier Rouy; Nicolas Duverger; Sluan D. Lin; Florence Emmanuel; Louis-Marie Houdebine; Patrice Denefle; Celine Viglietta; Elaine Gong; Edward M. Rubin; Steven D. Hughes

The in vivo analysis of lipoprotein(a) (Lp(a)), an independent atherosclerosis risk factor in humans, has been limited in part by its restricted distribution among mammals. Although transgenic mice have been created containing Lp(a), the relatively small size of the mouse has precluded some studies. To examine the properties of this molecule in a significantly larger mammal, we have used a 270-kilobase yeast artificial chromosome clone containing the human apolipoprotein(a) (apo(a)) gene and a 90-kilobase P1 phagemid clone containing the human apolipoprotein B (apoB) gene to create transgenic rabbits that express either or both transgenes. Expression of both transgenes was tissue specific and localized predominantly to the liver. Average apolipoprotein plasma levels in the rabbits were 2.5 mg/dl for apo(a) and 17.6 mg/dl for human apoB. In contrast to observations in apo(a) transgenic mice, we found that apo(a) plasma levels in the rabbits were stable throughout sexual maturity. Also, apo(a) formed a covalent association with the endogenous rabbit apoB albeit with a lower efficiency than its association with human apoB. The analysis of Lp(a) transgenic rabbits has provided new insights into apo(a) expression and Lp(a) assembly. In addition, these transgenic rabbits potentially will provide an improved experimental model for the in vivo analysis of Lp(a) and its role in promoting atherosclerosis and restenosis.


Circulation | 1999

Impairment of Endothelium-Dependent Arterial Relaxation By High-Fat Feeding in ApoE-Deficient Mice Toward Normalization By Human ApoA-I Expression

Valérie Deckert; Gérard Lizard; Nicolas Duverger; Anne Athias; Viviane Palleau; Florence Emmanuel; Maryvonne Moisant; Philippe Gambert; Christian Lallemant; Laurent Lagrost

BACKGROUND Atherogenic lipoproteins can impair the endothelium-dependent arterial relaxation, and circumstantial evidence suggests a beneficial role of plasma high density lipoproteins and apolipoprotein (apo) A-I in counteracting the endothelium dysfunction. In the present study, vascular reactivity was determined in control, apoE-deficient mice (apoE-KO mice), and apoE-deficient mice expressing human apoA-I (apoE-KO/HuAITg mice). METHODS AND RESULTS In the first part of the study, control and apoE-KO mice were fed a low-fat or a high-fat diet for 23 weeks, and the vasoactive responses of isolated thoracic aortic segments to norepinephrine, sodium nitroprusside, and acetylcholine (ACh) were determined. Whereas norepinephrine, sodium nitroprusside, and ACh evoked similar vascular responses in control and apoE-KO mice fed the low-fat diet, high-fat feeding in apoE-KO mice produced a significant 3-fold increase in the mean concentration required to produce a half-maximal relaxing effect (EC(50)) of ACh as compared with control mice. This reflects a weaker sensitivity to ACh of the aortic segments from the apoE-deficient animals. In the second part of the study, the mean EC(50) for ACh after high-fat feeding was found to be 4.4-fold lower in apoE-KO/HuAITg mice than in apoE-KO mice, indicating that the reduced sensitivity to ACh of the thoracic aorta from the apoE-KO mice fed the high-fat diet is improved by the expression of human apoA-I. CONCLUSIONS The present study demonstrates that the endothelium-dependent arterial relaxation is impaired in apoE-KO mice fed the high-fat diet. The endothelium dysfunction tends to be normalized by human apoA-I expression.


Journal of Gene Medicine | 2004

Human FGF‐1 gene transfer promotes the formation of collateral vessels and arterioles in ischemic muscles of hypercholesterolemic hamsters

Alexis Caron; Sandrine Michelet; Anne Caron; Sylvie Sordello; Marie‐Agnès Ivanov; Pia Delaère; Didier Branellec; Bertrand Schwartz; Florence Emmanuel

Acidic fibroblast growth factor (FGF‐1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF‐1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology.

Collaboration


Dive into the Florence Emmanuel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celine Viglietta

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis-Marie Houdebine

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edward Rubin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven D. Hughes

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge