Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Guivel-Benhassine is active.

Publication


Featured researches published by Florence Guivel-Benhassine.


PLOS Pathogens | 2008

A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease.

Thérèse Couderc; Fabrice Chrétien; Clémentine Schilte; Olivier Disson; Madly Brigitte; Florence Guivel-Benhassine; Yasmina Touret; Georges Barau; Nadège Cayet; Isabelle Schuffenecker; Philippe Desprès; Fernando Arenzana-Seisdedos; Alain Michault; Matthew L. Albert; Marc Lecuit

Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/βR+/−) or totally (IFN-α/βR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.


PLOS Pathogens | 2007

Characterization of Reemerging Chikungunya Virus

Marion Sourisseau; Clémentine Schilte; Nicoletta Casartelli; Céline Trouillet; Florence Guivel-Benhassine; Dominika Rudnicka; Nathalie Sol-Foulon; Karin Le Roux; Marie-Christine Prévost; Hafida Fsihi; Marie-Pascale Frenkiel; Fabien Blanchet; Philippe V. Afonso; Pierre-Emmanuel Ceccaldi; Simona Ozden; Antoine Gessain; Isabelle Schuffenecker; Bruno Verhasselt; Alessia Zamborlini; Ali Saïb; Félix A. Rey; Fernando Arenzana-Seisdedos; Philippe Desprès; Alain Michault; Matthew L. Albert; Olivier Schwartz

An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host.


Cell Host & Microbe | 2012

The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry.

Laurent Meertens; Xavier Carnec; Manuel Perera Lecoin; Rasika Ramdasi; Florence Guivel-Benhassine; Erin Lew; Greg Lemke; Olivier Schwartz; Ali Amara

Dengue viruses (DVs) are responsible for the most medically relevant arboviral diseases. However, the molecular interactions mediating DV entry are poorly understood. We determined that TIM and TAM proteins, two receptor families that mediate the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, serve as DV entry factors. Cells poorly susceptible to DV are robustly infected after ectopic expression of TIM or TAM receptors. Conversely, DV infection of susceptible cells is inhibited by anti-TIM or anti-TAM antibodies or knockdown of TIM and TAM expression. TIM receptors facilitate DV entry by directly interacting with virion-associated PtdSer. TAM-mediated infection relies on indirect DV recognition, in which the TAM ligand Gas6 acts as a bridging molecule by binding to PtdSer within the virion. This dual mode of virus recognition by TIM and TAM receptors reveals how DVs usurp the apoptotic cell clearance pathway for infectious entry.


Journal of Experimental Medicine | 2010

Type I IFN controls chikungunya virus via its action on nonhematopoietic cells.

Clémentine Schilte; Thérèse Couderc; Fabrice Chrétien; Marion Sourisseau; Nicolas Gangneux; Florence Guivel-Benhassine; Anton Kraxner; Jürg Tschopp; Stephen Higgs; Alain Michault; Fernando Arenzana-Seisdedos; Marco Colonna; Lucie Peduto; Olivier Schwartz; Marc Lecuit; Matthew L. Albert

Chikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis. Based on human studies and mouse experimentation, we show that CHIKV does not directly stimulate type I IFN production in immune cells. Instead, infected nonhematopoietic cells sense viral RNA in a Cardif-dependent manner and participate in the control of infection through their production of type I IFNs. Although the Cardif signaling pathway contributes to the immune response, we also find evidence for a MyD88-dependent sensor that is critical for preventing viral dissemination. Moreover, we demonstrate that IFN-α/β receptor (IFNAR) expression is required in the periphery but not on immune cells, as IFNAR−/−→WT bone marrow chimeras are capable of clearing the infection, whereas WT→IFNAR−/− chimeras succumb. This study defines an essential role for type I IFN, produced via cooperation between multiple host sensors and acting directly on nonhematopoietic cells, in the control of CHIKV.


PLOS Pathogens | 2010

Tetherin Restricts Productive HIV-1 Cell-to-Cell Transmission

Nicoletta Casartelli; Marion Sourisseau; Jérôme Feldmann; Florence Guivel-Benhassine; Adeline Mallet; Anne-Geneviève Marcelin; John C. Guatelli; Olivier Schwartz

The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24) impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or ΔVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of ΔVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread.


Journal of Experimental Medicine | 2012

Chikungunya virus–induced autophagy delays caspase-dependent cell death

Pierre Emmanuel Joubert; Scott W. Werneke; Claire de la Calle; Florence Guivel-Benhassine; Alessandra Giodini; Lucie Peduto; Beth Levine; Olivier Schwartz; Deborah J. Lenschow; Matthew L. Albert

Chikungunya virus induces autophagy by triggering ER and oxidative stress, and this autophagy restricts apoptosis and viral propagation.


PLOS Pathogens | 2013

Real-Time Whole-Body Visualization of Chikungunya Virus Infection and Host Interferon Response in Zebrafish

Nuno Palha; Florence Guivel-Benhassine; Valérie Briolat; Georges Lutfalla; Marion Sourisseau; Felix Ellett; Chieh-Huei Wang; Graham J. Lieschke; Philippe Herbomel; Olivier Schwartz; Jean-Pierre Levraud

Chikungunya Virus (CHIKV), a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN) response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus.


Nature Communications | 2016

Elimination of HIV-1-infected cells by broadly neutralizing antibodies

Timothée Bruel; Florence Guivel-Benhassine; Sonia Amraoui; Marine Malbec; Léa Richard; Katia Bourdic; Daniel A. Donahue; Valérie Lorin; Nicoletta Casartelli; Nicolas Noel; Olivier Lambotte; Hugo Mouquet; Olivier Schwartz

The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir.


Journal of Experimental Medicine | 2010

The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells

Nicoletta Casartelli; Florence Guivel-Benhassine; Romain Bouziat; Samantha Brandler; Olivier Schwartz; Arnaud Moris

The cytidine deaminase APOBEC3G (A3G) enzyme exerts an intrinsic anti–human immunodeficiency virus (HIV) defense by introducing lethal G-to-A hypermutations in the viral genome. The HIV-1 viral infectivity factor (Vif) protein triggers degradation of A3G and counteracts this antiviral effect. The impact of A3G on the adaptive cellular immune response has not been characterized. We examined whether A3G-edited defective viruses, which are known to express truncated or misfolded viral proteins, activate HIV-1–specific (HS) CD8+ cytotoxic T lymphocytes (CTLs). To this end, we compared the immunogenicity of cells infected with wild-type or Vif-deleted viruses in the presence or absence of the cytidine deaminase. The inhibitory effect of A3G on HIV replication was associated with a strong activation of cocultivated HS-CTLs. CTL activation was particularly marked with Vif-deleted HIV and with viruses harboring A3G. Enzymatically inactive A3G mutants failed to enhance CTL activation. We also engineered proviruses bearing premature stop codons in their genome as scars of A3G editing. These viruses were not infectious but potently activated HS-CTLs. Therefore, the pool of defective viruses generated by A3G represents an underestimated source of viral antigens. Our results reveal a novel function for A3G, acting not only as an intrinsic antiviral factor but also as an inducer of the adaptive immune system.


Journal of Virology | 2003

Poliovirus-Induced Apoptosis Is Reduced in Cells Expressing a Mutant CD155 Selected during Persistent Poliovirus Infection in Neuroblastoma Cells

Anne-Sophie Gosselin; Yannick Simonin; Florence Guivel-Benhassine; Vincent Rincheval; Jean-Luc Vayssière; Bernard Mignotte; Florence Colbère-Garapin; Thérèse Couderc; Bruno Blondel

ABSTRACT Poliovirus (PV) can establish persistent infections in human neuroblastoma IMR-32 cells. We previously showed that during persistent infection, specific mutations were selected in the first extracellular domain of the PV receptor (CD155) of these cells (N. Pavio, T. Couderc, S. Girard, J. Y. Sgro, B. Blondel, and F. Colbère-Garapin, Virology 274:331-342, 2000). These mutations included the Ala 67 → Thr substitution, corresponding to a previously described allelic form of the PV receptor. The mutated CD155Thr67 and the nonmutated IMR-32 CD155 (CD155IMR) were expressed independently in murine LM cells lacking the CD155 gene. Following infection of the cells with PV, we analyzed the death of cells expressing these two forms of CD155. Levels of DNA fragmentation, caspase activity, and cytochrome c release were lower in LM-CD155Thr67 cells than in LM-CD155IMR cells. Thus, the level of apoptosis was lower in cells expressing mutated CD155 selected during persistent PV infection in IMR-32 than in cells expressing the wild-type receptor.

Collaboration


Dive into the Florence Guivel-Benhassine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marion Sourisseau

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge