Florence Levillain
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Levillain.
Cell Host & Microbe | 2011
Hélène Botella; Pascale Peyron; Florence Levillain; Renaud Poincloux; Yannick Poquet; Irène Brandli; Chuan Wang; Ludovic Tailleux; Sylvain Tilleul; Guillaume M. Charrière; Simon J. Waddell; Maria Foti; Geanncarlo Lugo-Villarino; Qian qian Gao; Isabelle Maridonneau-Parini; Philip D. Butcher; Paola Ricciardi Castagnoli; Brigitte Gicquel; Chantal de Chastellier; Olivier Neyrolles
Summary Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this pattern of gene modulation, we observed a burst of free zinc inside macrophages, and intraphagosomal zinc accumulation within a few hours postinfection. Zinc exposure led to rapid CtpC induction, and ctpC deficiency caused zinc retention within the mycobacterial cytoplasm, leading to impaired intracellular growth of the bacilli. Thus, the use of P1-type ATPases represents a M. tuberculosis strategy to neutralize the toxic effects of zinc in macrophages. We propose that heavy metal toxicity and its counteraction might represent yet another chapter in the host-microbe arms race.
PLOS Pathogens | 2010
Priscille Brodin; Yannick Poquet; Florence Levillain; Isabelle Peguillet; Gérald Larrouy-Maumus; Martine Gilleron; Fanny Ewann; Thierry Christophe; Denis Fenistein; Jichan Jang; Mi-Seon Jang; Sei-Jin Park; Jean Rauzier; Jean-Philippe Carralot; Rachel Shrimpton; Auguste Genovesio; Jesús Gonzalo-Asensio; Germain Puzo; Carlos Martín; Roland Brosch; Graham R. Stewart; Brigitte Gicquel; Olivier Neyrolles
The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials.
Molecular Microbiology | 2008
Tounkang Sambou; Premkumar Dinadayala; Gustavo Stadthagen; Nathalie Barilone; Yann Bordat; Patricia Constant; Florence Levillain; Olivier Neyrolles; Brigitte Gicquel; Mamadou Daffé; Mary Jackson
Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen‐like α‐glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface‐exposed glucan in the physiology and virulence of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves the α‐1,4‐glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP‐glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production of capsular glucan and glycogen, respectively. Attempts to disrupt Rv3032 in the glgA mutant were unsuccessful, suggesting that a functional copy of at least one of the two α‐1,4‐glucosyltransferases is required for growth. Importantly, the glgA mutant was impaired in its ability to persist in mice, suggesting a role for the capsular glucan in the persistence phase of infection. Unexpectedly, GlgB was found to be an essential enzyme.
Cellular Microbiology | 2007
Sonia Meconi; Alain Vercellone; Florence Levillain; Bruno Payré; Talal Al Saati; Florence Capilla; Pierre Desreumaux; Arlette Darfeuille-Michaud; Frédéric Altare
Adherent‐invasive Escherichia coli (AIEC) have been shown to be highly associated with ileal Crohns disease (CD). AIEC survive within infected macrophages, residing within the phagolysosomal compartment where they take advantage of the low pH to replicate extensively. We investigated whether, like the tuberculous bacillus which also persists within macrophages, AIEC LF82 induces the formation of granulomas, which are a common histopathological feature of CD. For this purpose, we have taken advantage of an in vitro model of human granulomas that we recently developed, based on blood‐derived mononuclear cells. We demonstrated that AIEC LF82 induces aggregation of infected macrophages, fusion of some of them to form multinucleated giant cells and subsequent recruitment of lymphocytes. Light microscopy and scanning electron microscopy analysis of the cell aggregates confirmed their granuloma features. This was further confirmed by histological analysis of granuloma sections. Noteworthy, this phenomenon can be reproduced by soluble protein extracts of AIEC LF82 coated onto beads. Although the cell aggregates not completely mimic natural CD‐associated granulomas, they are very similar to early stages of epithelioid granulomas.
Journal of Experimental Medicine | 2009
Antoine Tanne; Bo Ma; Frédéric Boudou; Ludovic Tailleux; Hélène Botella; Edgar Badell; Florence Levillain; Maureen E. Taylor; Kurt Drickamer; Jérôme Nigou; Karen M. Dobos; Germain Puzo; Dietmar Vestweber; Martin K. Wild; Marie Marcinko; Peter Sobieszczuk; Lauren Stewart; Daniel Lebus; Brigitte Gicquel; Olivier Neyrolles
The C-type lectin dendritic cell−specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) mediates the innate immune recognition of microbial carbohydrates. We investigated the function of this molecule in the host response to pathogens in vivo, by generating mouse lines lacking the DC-SIGN homologues SIGNR1, SIGNR3, and SIGNR5. Resistance to Mycobacterium tuberculosis was impaired only in SIGNR3-deficient animals. SIGNR3 was expressed in lung phagocytes during infection, and interacted with M. tuberculosis bacilli and mycobacterial surface glycoconjugates to induce secretion of critical host defense inflammatory cytokines, including tumor necrosis factor (TNF). SIGNR3 signaling was dependent on an intracellular tyrosine-based motif and the tyrosine kinase Syk. Thus, the mouse DC-SIGN homologue SIGNR3 makes a unique contribution to protection of the host against a pulmonary bacterial pathogen.
PLOS Pathogens | 2014
Alexandre Gouzy; Gérald Larrouy-Maumus; Daria Bottai; Florence Levillain; Alexia Dumas; Joshua B. Wallach; Irène Caire-Brändli; Chantal de Chastellier; Ting-Di Wu; Renaud Poincloux; Roland Brosch; Jean-Luc Guerquin-Kern; Dirk Schnappinger; Luiz Pedro S. de Carvalho; Yannick Poquet; Olivier Neyrolles
Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.
Nature Chemical Biology | 2013
Alexandre Gouzy; Gérald Larrouy-Maumus; Ting-Di Wu; Antonio Peixoto; Florence Levillain; Geanncarlo Lugo-Villarino; Jean-Luc Guerquin-Kern; Luiz Pedro S. de Carvalho; Yannick Poquet; Olivier Neyrolles
Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant inactivated in AnsP1 revealed the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus.
Microbiology | 2010
Jichan Jang; Alexandre Stella; Frédéric Boudou; Florence Levillain; Eliette Darthuy; Julien Vaubourgeix; Chongzhen Wang; Fabienne Bardou; Germain Puzo; Martine Gilleron; Odile Burlet-Schiltz; Bernard Monsarrat; Priscille Brodin; Brigitte Gicquel; Olivier Neyrolles
Eukaryotic-like Ser/Thr protein kinases (STPKs) are present in many bacterial species, where they control various physiological and virulence processes by enabling microbial adaptation to specific environmental signals. PknJ is the only member of the 11 STPKs identified in Mycobacterium tuberculosis that still awaits characterization. Here we report that PknJ is a functional kinase that forms dimers in vitro, and contains a single transmembrane domain. Using a high-density peptide-chip-based technology, multiple potential mycobacterial targets were identified for PknJ. We confirmed PknJ-dependent phosphorylation of four of these targets: PknJ itself, which autophosphorylates at Thr(168), Thr(171) and Thr(173) residues; the transcriptional regulator EmbR; the methyltransferase MmaA4/Hma involved in mycolic acid biosynthesis; and the dipeptidase PepE, whose encoding gene is located next to pknJ in the mycobacterial genome. Our results provide a number of candidate phospho-targets for PknJ and possibly other mycobacterial STPKs that could be studied to investigate the role of STPKs in M. tuberculosis physiology and virulence.
PLOS ONE | 2012
Kang Wu; Dandan Dong; Hai Fang; Florence Levillain; Wen Jin; Jian Mei; Brigitte Gicquel; Yanzhi Du; Kankan Wang; Qian Gao; Olivier Neyrolles; Ji Zhang
The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature (“THP1r2Mtb-induced signature”). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen.
Biochemistry and Molecular Biology Education | 2002
Florence Levillain; Gilbert Laneelle
Multilayered vesicles made of egg‐phosphatidylcholine and of phosphatidic acid were used to teach in a 4‐h session of practical work with a low cost spectrophotometer how to determine osmolarity inside multilayered vesicles and to show, by using two anti‐tuberculous drugs (isonicotinic acid hydrazide, p‐aminosalicylate), that a small and non‐ionized molecule diffused freely through phospholipid vesicles, whereas a charged one did not. In addition, the permeabilizing effect of melittin, a membrane‐targeted bee‐venom toxin, was tested.