Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence P. Varodayan is active.

Publication


Featured researches published by Florence P. Varodayan.


The Journal of Neuroscience | 2017

Genetic and pharmacologic manipulation of TLR4 has minimal impact on ethanol consumption in rodents

R. Adron Harris; Michal Bajo; Richard L. Bell; Yuri A. Blednov; Florence P. Varodayan; Jay M. Truitt; Giordano de Guglielmo; Amy W. Lasek; Marian L. Logrip; Leandro F. Vendruscolo; Amanda J. Roberts; Edward Roberts; Olivier George; Jody Mayfield; Timothy R. Billiar; David J. Hackam; R. Dayne Mayfield; George F. Koob; Marisa Roberto; Gregg E. Homanics

Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. SIGNIFICANCE STATEMENT Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.


Neuropharmacology | 2017

Synaptic targets: Chronic alcohol actions

Marisa Roberto; Florence P. Varodayan

&NA; Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled “Alcoholism”. HighlightsChronic alcohol exposure produces neuroadaptation at GABA and glutamate synapses.The main effects are altered GABAAR/NMDAR expression, composition and/or function.It is hypothesized that these adaptations play a role in addictive drinking behavior.


Frontiers in Pharmacology | 2015

IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala

Michal Bajo; Florence P. Varodayan; Samuel G. Madamba; Amanda J. Robert; Lindsey M. Casal; Christopher S. Oleata; George R. Siggins; Marisa Roberto

Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2–12.7 g/kg (3–15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission.


Addiction Biology | 2016

Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

Florence P. Varodayan; Neeraj Soni; Michal Bajo; George Luu; Samuel G. Madamba; Paul Schweitzer; Loren H. Parsons; Marisa Roberto

The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol‐naive rats, CB1 agonist WIN 55,212‐2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor‐mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2) antagonism. After 2–3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol‐induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol‐naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol‐exposed rats. Although CB1 activation prevented this effect, the AM251‐ and ethanol‐induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol‐induced disruptions of CB1 signaling.


Brain Behavior and Immunity | 2015

Role of the IL-1 receptor antagonist in ethanol-induced regulation of GABAergic transmission in the central amygdala

Michal Bajo; Melissa A. Herman; Florence P. Varodayan; Christopher S. Oleata; Samuel G. Madamba; R.A. Harris; Yuri A. Blednov; Marisa Roberto

The IL-1 receptor antagonist (IL-1ra), encoded by the Il1rn gene, is an endogenous antagonist of the IL-1 receptor. Studies of Il1rn knockout (KO) and wild type (WT) mice identified differences in several ethanol-related behaviors, some of which may be mediated by GABAergic transmission in the central nucleus of the amygdala (CeA). In this study we examined phasic (both evoked and spontaneous) and tonic GABAergic transmission in the CeA of Il1rn KO and WT mice and the ethanol sensitivity of these GABAergic synapses. The mean amplitude of baseline evoked GABAA-inhibitory postsynaptic potentials (IPSPs), and the baseline frequency of spontaneous GABAA-inhibitory postsynaptic currents (sIPSCs), but not the frequency of miniature GABAA-IPSCs (mIPSCs), were significantly increased in KO compared to WT mice, indicating enhanced presynaptic action potential-dependent GABA release in the CeA of KO mice. In KO mice, we also found a cell-type specific switch in the ongoing tonic GABAA receptor conductance such that the tonic conductance in low threshold bursting (LTB) neurons is lost and a tonic conductance in late spiking (LS) neurons appears. Notably, the ethanol-induced facilitation of evoked and spontaneous GABA release was lost in most of the CeA neurons from KO compared to WT mice. Ethanol superfusion increased the sIPSC rise and decay times in both KO and WT mice, suggesting ethanol-induced postsynaptic effects. The pretreatment of CeA slices with exogenous IL-1ra (Kineret; 100ng/ml) returned sIPSC frequency in KO mice to the levels found in WT. Importantly, Kineret also restored ethanol-induced potentiation of the sIPSC frequency in the KO mice. These results show that IL-1ra regulates baseline GABAergic transmission in the CeA and is critical for the ethanol effects at these synapses.


Neuropsychopharmacology | 2014

Nociceptin/Orphanin FQ Decreases Glutamate Transmission and Blocks Ethanol-Induced Effects in the Central Amygdala of Naive and Ethanol-Dependent Rats

Marsida Kallupi; Florence P. Varodayan; Christopher S. Oleata; Diego Correia; George Luu; Marisa Roberto

The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100–1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1–13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.


Neuropharmacology | 2016

Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: Alcohol and CRF effects

Melissa A. Herman; Florence P. Varodayan; Christopher S. Oleata; George Luu; Dean Kirson; Markus Heilig; Roberto Ciccocioppo; Marisa Roberto

The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes.


Addiction Biology | 2017

Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala

Florence P. Varodayan; Michal Bajo; Neeraj Soni; George Luu; Samuel G. Madamba; Paul Schweitzer; Marisa Roberto

The basolateral nucleus of the amygdala (BLA) is critical to the pathophysiology of anxiety‐driven alcohol drinking and relapse. The endogenous cannabinoid/type 1 cannabinoid receptor (eCB/CB1) system curbs BLA‐driven anxiety and stress responses via a retrograde negative feedback system that inhibits neurotransmitter release, and BLA CB1 activation reduces GABA release and drives anxiogenesis. Additionally, decreased amygdala CB1 is observed in abstinent alcoholic patients and ethanol withdrawn rats. Here, we investigated the potential disruption of eCB/CB1 signaling on GABAergic transmission in BLA pyramidal neurons of rats exposed to 2–3 weeks intermittent ethanol. In the naïve rat BLA, the CB1 agonist WIN 55,212‐2 (WIN) decreased GABA release, and this effect was prevented by the CB1 antagonist AM251. AM251 alone increased GABA release via a mechanism requiring postsynaptic calcium‐dependent activity. This retrograde tonic eCB/CB1 signaling was diminished in chronic ethanol exposed rats, suggesting a functional impairment of the eCB/CB1 system. In contrast, acute ethanol increased GABAergic transmission similarly in naïve and chronic ethanol exposed rats, via both presynaptic and postsynaptic mechanisms. Notably, CB1 activation impaired ethanols facilitation of GABAergic transmission across both groups, but the AM251‐induced and ethanol‐induced facilitation of GABA release was additive, suggesting independent presynaptic sites of action. Collectively, the present findings highlight a critical CB1 influence on BLA GABAergic transmission that is dysregulated by chronic ethanol exposure and, thus, may contribute to the alcohol‐dependent state.


The Journal of Neuroscience | 2017

Alcohol Dependence Disrupts Amygdalar L-Type Voltage-Gated Calcium Channel Mechanisms

Florence P. Varodayan; Giordano de Guglielmo; Marian L. Logrip; Olivier George; Marisa Roberto

L-type voltage-gated calcium channels (LTCCs) are implicated in several psychiatric disorders that are comorbid with alcoholism and involve amygdala dysfunction. Within the amygdala, the central nucleus (CeA) is critical in acute alcohols reinforcing actions, and its dysregulation in human alcoholics drives their negative emotional state and motivation to drink. Here we investigated the specific role of CeA LTCCs in the effects of acute alcohol at the molecular, cellular physiology, and behavioral levels, and their potential neuroadaptation in alcohol-dependent rats. Alcohol increases CeA activity (neuronal firing rates and GABA release) in naive rats by engaging LTCCs, and intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence reduces CeA LTCC membrane abundance and disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohols effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. Collectively, our data indicate that alcohol dependence functionally alters the molecular mechanisms underlying the CeAs response to alcohol (from LTCC- to CRF1-driven). This mechanistic switch contributes to and reflects the prominent role of the CeA in the negative emotional state that drives excessive drinking. SIGNIFICANCE STATEMENT The central amygdala (CeA) plays a critical role in the development of alcohol dependence. As a result, much preclinical alcohol research aims to identify relevant CeA neuroadaptions that promote the transition to dependence. Here we report that acute alcohol increases CeA neuronal activity in naive rats by engaging L-type calcium channels (LTCCs) and that intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohols effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. This switch reflects the important role of the CeA in the pathophysiology of alcohol dependence and represents a new potential avenue for therapeutic intervention during the transition period.


Neuropharmacology | 2017

P/Q-type voltage-gated calcium channels mediate the ethanol and CRF sensitivity of central amygdala GABAergic synapses

Florence P. Varodayan; Marian L. Logrip; Marisa Roberto

The central amygdala (CeA) GABAergic system is hypothesized to drive the development of alcohol dependence, due to its pivotal roles in the reinforcing actions of alcohol and the expression of negative emotion, anxiety and stress. Recent work has also identified an important role for the CeA corticotropin-releasing factor (CRF) system in the interaction between anxiety/stress and alcohol dependence. We have previously shown that acute alcohol and CRF each increase action potential-independent GABA release in the CeA via their actions at presynaptic CRF type 1 receptors (CRF1s); however, the shared mechanism employed by these two compounds requires further investigation. Here we report that acute alcohol interacts with the CRF/CRF1 system, such that CRF and alcohol act via presynaptic CRF1s and P/Q-type voltage-gated calcium channels to promote vesicular GABA release and that both compounds occlude the effects of each other at these synapses. Chronic alcohol exposure does not alter P/Q-type voltage-gated calcium channel membrane abundance or this CRF1/P/Q-type voltage-gated calcium channel mechanism of acute alcohol-induced GABA release, indicating that alcohol engages this molecular mechanism at CeA GABAergic synapses throughout the transition to dependence. Thus, P/Q-type voltage-gated calcium channels, like CRF1s, are key regulators of the effects of alcohol on GABAergic signaling in the CeA.

Collaboration


Dive into the Florence P. Varodayan's collaboration.

Top Co-Authors

Avatar

Marisa Roberto

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michal Bajo

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda J. Roberts

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia Khom

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

David M. Hedges

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dean Kirson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

George Luu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Reesha R. Patel

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge