Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Bajo is active.

Publication


Featured researches published by Michal Bajo.


Biological Psychiatry | 2010

Corticotropin Releasing Factor–Induced Amygdala Gamma-Aminobutyric Acid Release Plays a Key Role in Alcohol Dependence

Marisa Roberto; Maureen T. Cruz; Nicholas W. Gilpin; Valentina Sabino; Paul Schweitzer; Michal Bajo; Pietro Cottone; Samuel G. Madamba; David G. Stouffer; Eric P. Zorrilla; George F. Koob; George R. Siggins; Loren H. Parsons

BACKGROUND Corticotropin-releasing factor (CRF) and gamma-aminobutyric acid (GABA)ergic systems in the central amygdala (CeA) are implicated in the high-anxiety, high-drinking profile associated with ethanol dependence. Ethanol augments CeA GABA release in ethanol-naive rats and mice. METHODS Using naive and ethanol-dependent rats, we compared electrophysiologic effects and interactions of CRF and ethanol on CeA GABAergic transmission, and we measured GABA dialyzate in CeA after injection of CRF(1) antagonists and ethanol. We also compared mRNA expression in CeA for CRF and CRF(1) using real-time polymerase chain reaction. We assessed effects of chronic treatment with a CRF(1) antagonist on withdrawal-induced increases in alcohol consumption in dependent rats. RESULTS CRF and ethanol augmented CeA GABAergic transmission in naive rats via increased GABA release. Three CRF1 receptor (CRF(1)) antagonists decreased basal GABAergic responses and abolished ethanol effects. Ethanol-dependent rats exhibited heightened sensitivity to CRF and CRF(1) antagonists on CeA GABA release. Intra-CeA CRF(1) antagonist administration reversed dependence-related elevations in GABA dialysate and blocked ethanol-induced increases in GABA dialyzate in both dependent and naive rats. Polymerase chain reaction studies indicate increased expression of CRF and CRF(1) in CeA of dependent rats. Chronic CRF(1) antagonist treatment blocked withdrawal-induced increases in alcohol drinking by dependent rats and tempered moderate increases in alcohol consumption by nondependent rats in intermittent testing. CONCLUSIONS These combined findings suggest a key role for specific presynaptic CRF-GABA interactions in CeA in the development and maintenance of ethanol dependence.


Proceedings of the National Academy of Sciences of the United States of America | 2009

CRF system recruitment mediates dark side of compulsive eating

Pietro Cottone; Valentina Sabino; Marisa Roberto; Michal Bajo; Lara Pockros; Jennifer B. Frihauf; Éva M. Fekete; Luca Steardo; Kenner C. Rice; Dimitri E. Grigoriadis; Bruno Conti; George F. Koob; Eric P. Zorrilla

Dieting to control body weight involves cycles of deprivation from palatable food that can promote compulsive eating. The present study shows that rats withdrawn from intermittent access to palatable food exhibit overeating of palatable food upon renewed access and an affective withdrawal-like state characterized by corticotropin-releasing factor-1 (CRF1) receptor antagonist-reversible behaviors, including hypophagia, motivational deficits to obtain less palatable food, and anxiogenic-like behavior. Withdrawal was accompanied by increased CRF expression and CRF1 electrophysiological responsiveness in the central nucleus of the amygdala. We propose that recruitment of anti-reward extrahypothalamic CRF-CRF1 systems during withdrawal from palatable food, analogous to abstinence from abused drugs, may promote compulsive selection of palatable food, undereating of healthier alternatives, and a negative emotional state when intake of palatable food is prevented.


Neuropsychopharmacology | 2006

Chronic ethanol exposure and protracted abstinence alter NMDA receptors in central amygdala

Marisa Roberto; Michal Bajo; Elena Crawford; Samuel G. Madamba; George R. Siggins

We recently reported that chronic ethanol treatment (CET) and early withdrawal (2–8 h) altered glutamatergic transmission at both pre- and postsynaptic sites in central nucleus of the amygdala (CeA). Acute ethanol (44 mM) inhibited the NMDA receptor (NMDAR)-mediated EPSCs (NMDA-EPSCs) more in CeA neurons from CET rats than from naïve rats and also decreased paired-pulse facilitation (PPF) of NMDA-EPSCs only in CET rats. To determine whether these CET effects persisted after prolonged withdrawal, we recorded intracellularly in rat CeA slices and measured mRNA and protein expression of CeA NMDAR subunits from CET rats and those withdrawn from ethanol for 1 or 2 weeks. At 1 week withdrawal, acute ethanol decreased evoked NMDA-EPSC amplitudes and NMDA currents induced by exogenous NMDA (∼20%) equally to that in naïve rats, indicating that CET effects on postsynaptic mechanisms reversed 1 week after CET cessation. However, acute ethanol still decreased PPF of NMDA-EPSCs, indicating that the acute ethanol-induced increase in glutamate release in CeA seen in CET rats was still present at this time. CET also significantly increased mRNA levels of NR1 and NR2B NMDAR subunits compared to control rats. At 1 week withdrawal, mRNA levels for NR1 and NR2B subunits were significantly decreased. These changes reversed at 2 weeks withdrawal. In Western blots, a significant increase in protein for all three subunits occurred in CeA from CET rats, but not after 1 and 2 weeks of withdrawal. These data indicate that CET induces reversible neuroadaptations in synaptic function, gene expression, and protein composition of NMDAR at CeA synapses.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala

Michal Bajo; Maureen T. Cruz; George R. Siggins; Robert O. Messing; Marisa Roberto

In the central amygdala (CeA), ethanol acts via corticotrophin-releasing factor (CRF) type 1 receptors to enhance GABA release. Amygdala CRF mediates anxiety associated with stress and drug dependence, and it regulates ethanol intake. Because mutant mice that lack PKCε exhibit reduced anxiety-like behavior and alcohol consumption, we investigated whether PKCε lies downstream of CRF1 receptors in the CeA. Compared with PKCε+/+ CeA neurons, PKCε−/− neurons showed increased GABAergic tone due to enhanced GABA release. CRF and ethanol stimulated GABA release in the PKCε+/+ CeA, but not in the PKCε−/− CeA. A PKCε-specific inhibitor blocked both CRF- and ethanol-induced GABA release in the PKCε+/+ CeA, confirming findings in the PKCε−/− CeA. These results identify a PKCε signaling pathway in the CeA that is activated by CRF1 receptor stimulation, mediates GABA release at nerve terminals, and regulates anxiety and alcohol consumption.


Neuropsychopharmacology | 2010

The Endocannabinoid System Tonically Regulates Inhibitory Transmission and Depresses the Effect of Ethanol in Central Amygdala

Marisa Roberto; Maureen T. Cruz; Michal Bajo; George R. Siggins; Loren H. Parsons; Paul Schweitzer

The central amygdala (CeA) has a major role in alcohol dependence and reinforcement, and behavioral and neurochemical evidence suggests a role for the endocannabinoid (eCB) system in ethanol binging and dependence. We used a slice preparation to investigate the physiological role of cannabinoids and their interaction with ethanol on inhibitory synaptic transmission in CeA. Superfusion of the cannabinoid receptor (CB1) agonist WIN55212-2 (WIN2) onto CeA neurons decreased evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the CB1 antagonists Rimonabant (SR141716, SR1) and AM251. SR1 or AM251 applied alone augmented IPSPs, revealing a tonic eCB activity that decreased inhibitory transmission in CeA. Paired-pulse analysis suggested a presynaptic CB1 mechanism. Intracellular BAPTA abolished the ability of AM251 to augment IPSPs, demonstrating the eCB-driven nature and postsynaptic origin of the tonic CB1-dependent control of GABA release. Superfusion of ethanol increased IPSPs and addition of WIN2 reversed the ethanol effect. Similarly, previous superfusion of WIN2 prevented subsequent ethanol effects on GABAergic transmission. The ethanol-induced augmentation of IPSPs was additive to CB1 blockade, ruling out a participation of CB1 in the action of acute ethanol. Our study points to an important role of CB1 in CeA in which the eCBs tonically regulate neuronal activity, and suggests a potent mechanism for modulating CeA tone during challenge with ethanol.


Journal of Neuroscience Research | 2006

Chronic morphine treatment alters expression of N‐methyl‐D‐aspartate receptor subunits in the extended amygdala

Michal Bajo; Elena Crawford; Marisa Roberto; Samuel G. Madamba; George R. Siggins

The nucleus accumbens (NAcc) and central amygdala (CeA) are parts of the extended amygdala, a complex that plays a key role in drug abuse and dependence. Our previous studies showed that opiates and ethanol alter glutamatergic transmission in these regions. N‐methyl‐D‐aspartate (NMDA) receptors are key components of glutamatergic transmission likely involved in the development of opiate tolerance and dependence. In this study we examined the effects of chronic morphine administration on gene and protein expression of three major NMDA receptors subunits (NR1, NR2A, and NR2B) in NAcc and CeA. Real‐time PCR showed no differences in mRNA levels of any of the subunits in the whole NAcc between naïve and morphine‐dependent rats. However, at the protein level, immunoblotting revealed that chronic morphine significantly increased levels of NR1 and NR2B subunits. In contrast to the case for NAcc, in CeA we found an increased mRNA level for the NR1 subunit only but unchanged protein levels of all three subunits in morphine‐dependent rats. The altered expressions of NMDA receptor subunits, especially in NAcc, of morphine‐dependent rats may represent a neuroadaptation to chronic morphine and suggest a mechanism for the changes of glutamatergic transmission found in the extended amygdala in dependent rats. In addition, our results indicate a region‐specific response of NMDA receptor subunits to chronic morphine administration at the gene and protein levels.


Brain Behavior and Immunity | 2014

Innate immune factors modulate ethanol interaction with GABAergic transmission in mouse central amygdala

Michal Bajo; Samuel G. Madamba; Marisa Roberto; Yuri A. Blednov; Vasudeva Naidu Sagi; Edward Roberts; Kenner C. Rice; R. Adron Harris; George R. Siggins

Excessive ethanol drinking in rodent models may involve activation of the innate immune system, especially toll-like receptor 4 (TLR4) signaling pathways. We used intracellular recording of evoked GABAergic inhibitory postsynaptic potentials (eIPSPs) in central amygdala (CeA) neurons to examine the role of TLR4 activation by lipopolysaccharide (LPS) and deletion of its adapter protein CD14 in acute ethanol effects on the GABAergic system. Ethanol (44, 66 or 100mM) and LPS (25 and 50μg/ml) both augmented eIPSPs in CeA of wild type (WT) mice. Ethanol (44mM) decreased paired-pulse facilitation (PPF), suggesting a presynaptic mechanism of action. Acute LPS (25μg/ml) had no effect on PPF and significantly increased the mean miniature IPSC amplitude, indicating a postsynaptic mechanism of action. Acute LPS pre-treatment potentiated ethanol (44mM) effects on eIPSPs in WT mice and restored ethanols augmenting effects on the eIPSP amplitude in CD14 knockout (CD14 KO) mice. Both the LPS and ethanol (44-66mM) augmentation of eIPSPs was diminished significantly in most CeA neurons of CD14 KO mice; however, ethanol at the highest concentration tested (100mM) still increased eIPSP amplitudes. By contrast, ethanol pre-treatment occluded LPS augmentation of eIPSPs in WT mice and had no significant effect in CD14 KO mice. Furthermore, (+)-naloxone, a TLR4-MD-2 complex inhibitor, blocked LPS effects on eIPSPs in WT mice and delayed the ethanol-induced potentiation of GABAergic transmission. In CeA neurons of CD14 KO mice, (+)-naloxone alone diminished eIPSPs, and subsequent co-application of 100mM ethanol restored the eIPSPs to baseline levels. In summary, our results indicate that TLR4 and CD14 signaling play an important role in the acute ethanol effects on GABAergic transmission in the CeA and support the idea that CD14 and TLR4 may be therapeutic targets for treatment of alcohol abuse.


The Journal of Neuroscience | 2017

Genetic and pharmacologic manipulation of TLR4 has minimal impact on ethanol consumption in rodents

R. Adron Harris; Michal Bajo; Richard L. Bell; Yuri A. Blednov; Florence P. Varodayan; Jay M. Truitt; Giordano de Guglielmo; Amy W. Lasek; Marian L. Logrip; Leandro F. Vendruscolo; Amanda J. Roberts; Edward Roberts; Olivier George; Jody Mayfield; Timothy R. Billiar; David J. Hackam; R. Dayne Mayfield; George F. Koob; Marisa Roberto; Gregg E. Homanics

Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. SIGNIFICANCE STATEMENT Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.


Frontiers in Pharmacology | 2015

IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala

Michal Bajo; Florence P. Varodayan; Samuel G. Madamba; Amanda J. Robert; Lindsey M. Casal; Christopher S. Oleata; George R. Siggins; Marisa Roberto

Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2–12.7 g/kg (3–15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission.


Addiction Biology | 2016

Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

Florence P. Varodayan; Neeraj Soni; Michal Bajo; George Luu; Samuel G. Madamba; Paul Schweitzer; Loren H. Parsons; Marisa Roberto

The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol‐naive rats, CB1 agonist WIN 55,212‐2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor‐mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2) antagonism. After 2–3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol‐induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol‐naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol‐exposed rats. Although CB1 activation prevented this effect, the AM251‐ and ethanol‐induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol‐induced disruptions of CB1 signaling.

Collaboration


Dive into the Michal Bajo's collaboration.

Top Co-Authors

Avatar

Marisa Roberto

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

George R. Siggins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Samuel G. Madamba

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda J. Roberts

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul Schweitzer

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maureen T. Cruz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

George F. Koob

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reesha R. Patel

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge