Florencia Alvarez
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florencia Alvarez.
Current Microbiology | 2007
Analía Príncipe; Florencia Alvarez; Marina G. Castro; Lucía Zachi; Sonia Fischer; Gladys Mori; Edgardo Jofré
A bacterial collection of approximately one thousand native strains, isolated from saline soils of Cordoba province (Argentina), was established. From this collection, a screening to identify those strains showing plant growth promotion and biocontrol activities, as well as salt tolerance, was performed. Eight native strains tolerant to 1 M NaCl and displaying plant growth promotion and/or biocontrol features were selected for further characterization. Strains MEP2 18, MRP2 26, MEP2 11a, MEP3 1, and MEP3 3b significantly increased the growth of maize seedlings under normal and saline conditions, whereas isolates ARP2 3, AEP1 5, and ARP2 6 were able to increase the root dry weight of agropyre under saline conditions. On the other hand, strains MEP2 18 and ARP2 3 showed antagonistic activity against phytopathogenic fungi belonging to Sclerotinia and Fusarium genus. Antifungal activity was found in cell-free supernatants, and it was heat and protease resistant. Strains MEP218 and ARP23 were identified as Bacillus sp. and strains MEP211a and MEP33b as Ochrobactrum sp. according to the sequence analysis of 16S rRNA gene.
Colloids and Surfaces B: Biointerfaces | 2011
Claudia A. Grillo; Florencia Alvarez; M. Fernández Lorenzo de Mele
Mg-based materials are promising for orthopedic, dental, and cardiovascular applications but their high degradation rate in vivo (release of Mg ions and debris particles) is cause of great concern. Protective treatments involving fluoride conversion coatings have been proposed in order to reduce corrosion rates. The aim of this study was to evaluate Mg debris biodegradation and its possible cytotoxic effects on osteoblastic cells in situ. Neutral Red dying and Acridine Orange staining techniques were used as endpoints to analyse the cytotoxic effects at 100-2000 μg/mL concentration range. Results showed a marked variation of Mg ion concentration in the culture medium after different exposure periods (1, 2, or 24h). Interestingly, the release rate of magnesium ions was dependent on the presence or absence fluoride treatment. Adverse effects induced by ≥1000 μg/mL MP doses and Mg ion concentrations higher than 480 μg/mL were observed on cells. Results showed significant differences between the concentration of Mg ions in the presence and absence of cells. This fact reveals a dynamic equilibrium mediated by Mg ion input and output in the cells that leads to the change in MP corrosion rates. Fluoride release from conversion coatings did not show cytotoxic effects.
Colloids and Surfaces B: Biointerfaces | 2014
Claudia A. Grillo; Florencia Alvarez; Mónica A. Fernández Lorenzo de Mele
Rare earth (RE) elements have been proposed to improve the corrosion resistance of degradable Mg alloys for medical applications. However, good biocompatibility of the elements released by Mg alloys during degradation is essential for their use in implants. Most studies are focused on material science and engineering aspects, but the effects of ions released at the biological interface are not frequently addressed. The aim of this study was to contribute to the knowledge of in vitro toxicological effects of two RE Mg-alloying elements, La and Gd, as individual ions and in mixtures with and without Mg ions. Different combinations (Mg+Gd, Mg+La, and Mg+Gd+La) were used to evaluate their possible synergistic effects on CHO-K1 cells. Two sets of experiments were designed to assess (1) the cyto-genotoxic effect of La and Gd ions by neutral red (NR) technique, Reduction of tetrazolium salt (MTT), Viability with Acridine Orange staining, Clonogenic test, and Comet assay; and, (2) the possible synergistic toxicological effect of La and Gd ions in mixtures, and the influence of osmolarity increase on cellular response. Cytotoxic effects of RE were found at concentrations ≥200 μM RE while DNA damage was detected for doses ≥1500 μM and ≥1600 μM for La and Gd, respectively. When mixtures of ions were evaluated, neither synergistic cytotoxic effects nor biological damage related to osmolarity increase were detected.
Materials Science and Engineering: C | 2016
Claudia A. Grillo; Florencia Alvarez; Mónica A. Fernández Lorenzo de Mele
This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials.
Fems Microbiology Letters | 2009
Analía Príncipe; Edgardo Jofré; Florencia Alvarez; Gladys Mori
The plant growth-promoting rhizobacterium, Ochrobactrum sp. 11a displays a high intrinsic salinity tolerance and has been used in this work to study the molecular basis of bacterial responses to high concentrations of NaCl. A collection of Ochrobactrum sp. 11a mutants was generated by Tn5-B21 mutagenesis and screened for sensitivity to salinity. One clone, designated PBP and unable to grow on glutamate mannitol salt agar medium supplemented with 300 mM NaCl was selected and further characterized. The PBP mutant carries a single transposon insertion in a gene showing a high degree of identity to the serine-type d-alanyl-d-alanine carboxypeptidase gene of Ochrobactrum anthropi. Interestingly, the expression of this gene was shown to be upregulated by salt in the PBP mutant. Moreover, evidence is presented for the requirement of the gene product for adaptation to high-salt conditions as well as to overcome the toxicity of LiCl, KCl, sucrose, polyethylene glycol (PEG), AlCl(3), CuSO(4), and ZnSO(4). In addition to the altered tolerance to both ionic and osmotic stresses, the PBP mutant exhibited changes in colony and cell morphology, exopolysaccharide production, and an increased sensitivity to detergents.
International Journal of Systematic and Evolutionary Microbiology | 2018
Pablo Martina; Mariana Leguizamón; Claudia I. Prieto; Sílvia A. Sousa; Patricia Montanaro; Walter O. Draghi; Maren Stämmler; Marisa Bettiol; Carla C. C. R. de Carvalho; Juliana Palau; Cecilia Figoli; Florencia Alvarez; Silvina Benetti; Sergio Lejona; Cecilia Vescina; Julián Ferreras; Peter Lasch; Antonio Lagares; Angeles Zorreguieta; Jorge H. Leitão; Osvaldo Yantorno; Alejandra Bosch
Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040T (=LMG 29660T=DSM 103137T) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and β-galactosidase activities.
Archive | 2013
Sonia Fischer; Analía Príncipe; Florencia Alvarez; Paula Cordero; Marina G. Castro; Agustina Godino; Edgardo Jofré; Gladys Mori
Plant growth-promoting bacteria (PGPBs) are capable of colonizing plants and influencing their growth by direct or indirect mechanisms. The direct mode of action occurs when metabolites or compounds synthesized by microorganisms are provided to the plant—for example, phytohormones—or when the bacteria facilitate the plant’s uptake of certain nutrients from the environment. In the indirect form of promotion, bacteria protect the plant against phytopathogenic organisms through the induction of systemic resistance and/or by the synthesis of antimicrobial compounds. The use of beneficial microorganisms as biopesticides offers a promising alternative to the use of chemical pesticides and an environmentally friendly strategy for agriculture. The PGPBs most studied and exploited as biocontrol agents are the species of Bacillus and fluorescent Pseudomonas. These strains produce a wide variety of metabolites involved in the biologic control of phytopathogenic fungi—for example, extracellular enzymes, siderophores, antibiotics, hydrogen cyanide, and volatile organic compounds, among others. Antibiosis is one mechanism of biologic control that is well characterized in Bacillus and Pseudomonas strains both genetically and biochemically. Among antibiotics identified in these two genera include the cyclic lipopeptides such surfactin, iturin, and fengycin in the bacilli and phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, and pyrrolnitrin in the pseudomonads.
Microscopy and Microanalysis | 2016
Florencia Alvarez; R.M. Lozano; B. T. Pérez-Maceda; Claudia A. Grillo; M. Fernández Lorenzo de Mele
Mg-based implants have promising applications as biodegradable materials in medicine for orthopedic, dental, and cardiovascular therapies. During wear and degradation microdebris are released. Time-lapse multidimensional microscopy (MM) is proposed here as a suitable tool to follow, in fixed intervals over 24-h periods, the interaction between cells and particles. Results of MM show interactions of macrophages (J774) with the magnesium particles (MgPa) that led to modifications of cell size and morphology, a decrease in duplication rate, and cell damage. Corrosion products were progressively formed on the surface of the particles and turbulence was generated due to hydrogen development. Changes were more significant after treating MgPa with potassium fluoride. In order to complement MM observations, membrane damage as detected by a lactase dehydrogenase (LDH) assay and mitochondrial activity as detected by a WST-1 assay with macrophages and osteoblasts (MC3T3-E1) were compared. A more significant concentration-dependent effect was detected for macrophages exposed to MgPa than for osteoblasts. Accordingly, complementary data showed that viability and cell cycle seem to be more altered in macrophages. In addition, protein profiles and expression of proteins associated with the adhesion process changed in the presence of MgPa. These studies revealed that time-lapse MM is a helpful tool for monitoring changes of biodegradable materials and the biological surrounding in real time and in situ. This information is useful in studies related to biodegradable biomaterials.
Journal of Biotechnology | 2018
José Luis López; Florencia Alvarez; Analía Príncipe; María Eugenia Salas; Mauricio Lozano; Walter O. Draghi; Edgardo Jofré; Antonio Lagares
A growing body of evidence has reinforced the central role of microbiomes in the life of sound multicellular eukaryotes, thus more properly described as true holobionts. Though soil was considered a main source of plant microbiomes, seeds have been shown to be endophytically colonized by microorganisms thus representing natural carriers of a selected microbial inoculum to the young seedlings. In this work we have investigated the type of culturable endophytic bacteria that are carried within surface-sterilized alfalfa seeds. MALDI-TOF analysis revealed the presence of bacteria that belonged to 40 separate genera, distributed within four taxa (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes). Nonsymbiotic members of the Rhizobiaceae family were also found. The evaluation of nine different in-vitro biochemical activities demonstrated isolates with complex combinations of traits that, upon a Principal-Component-Analysis, could be classified into four phenotypic groups. That isolates from nearly half of the genera identified had been able to colonize alfalfa plants grown under axenic conditions was remarkable. Further analyses should be addressed to investigating the colonization mechanisms of the alfalfa seeds, the evolutionary significance of the alfalfa-seed endophytes, and also how after germination the seed microbiome competes with spermospheric and rhizospheric soil bacteria to colonize newly emerging seedlings.
Systematic and Applied Microbiology | 2017
María Antonieta Toniutti; Laura Viviana Fornasero; Francisco Javier Albicoro; María Carla Martini; Walter O. Draghi; Florencia Alvarez; Antonio Lagares; José Francisco Pensiero; María Florencia Del Papa
Desmodium spp. are leguminous plants belonging to the tribe Desmodieae of the subfamily Papilionoideae. They are widely distributed in temperated and subtropical regions and are used as forage plants, for biological control, and in traditional folk medicine. The genus includes pioneer species that resist the xerothermic environment and grow in arid, barren sites. Desmodium species that form nitrogen-fixing symbiosis with rhizobia play an important role in sustainable agriculture. In Argentina, 23 native species of this genus have been found, including Desmodium incanum. In this study, a total of 64 D. incanum-nodulating rhizobia were obtained from root nodules of four Argentinean plant populations. Rhizobia showed different abiotic-stress tolerances and a remarkable genetic diversity using PCR fingerprinting, with more than 30 different amplification profiles. None of the isolates were found at more than one site, thus indicating a high level of rhizobial diversity associated with D. incanum in Argentinean soils. In selected isolates, 16S rDNA sequencing and whole-cell extract MALDI TOF analysis revealed the presence of isolates related to Bradyrhizobium elkanii, Bradyrhizobium japonicum, Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense, Bradyrhizobium denitrificans and Rhizobium tropici species. In addition, the nodC gene studied in the selected isolates showed different allelic variants. Isolates were phenotypically characterized by assaying their growth under different abiotic stresses. Some of the local isolates were remarkably tolerant to high temperatures, extreme pH and salinity, which are all stressors commonly found in Argentinean soils. One of the isolates showed high tolerance to temperature and extreme pH, and produced higher aerial plant dry weights compared to other inoculated treatments. These results indicated that local isolates could be efficiently used for D. incanum inoculation.