Florian Frugier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian Frugier.
The Plant Cell | 2009
Christine Lelandais-Brière; Loreto Naya; Erika Sallet; Fanny Calenge; Florian Frugier; Caroline Hartmann; Jérôme Gouzy; Martin Crespi
Posttranscriptional regulation of a variety of mRNAs by small 21- to 24-nucleotide RNAs, notably the microRNAs (miRNAs), is emerging as a novel developmental mechanism. In legumes like the model Medicago truncatula, roots are able to develop a de novo meristem through the symbiotic interaction with nitrogen-fixing rhizobia. We used deep sequencing of small RNAs from root apexes and nodules of M. truncatula to identify 100 novel candidate miRNAs encoded by 265 hairpin precursors. New atypical precursor classes producing only specific 21- and 24-nucleotide small RNAs were found. Statistical analysis on sequencing reads abundance revealed specific miRNA isoforms in a same family showing contrasting expression patterns between nodules and root apexes. The differentially expressed conserved and nonconserved miRNAs may target a large variety of mRNAs. In root nodules, which show diverse cell types ranging from a persistent meristem to a fully differentiated central region, we discovered miRNAs spatially enriched in nodule meristematic tissues, vascular bundles, and bacterial infection zones using in situ hybridization. Spatial regulation of miRNAs may determine specialization of regulatory RNA networks in plant differentiation processes, such as root nodule formation.
Plant Journal | 2008
Adnane Boualem; Philippe Laporte; Mariana Jovanovic; Carole Laffont; Julie Plet; Jean-Philippe Combier; Andreas Niebel; Martin Crespi; Florian Frugier
Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.
Plant Journal | 2011
Julie Plet; Anton P. Wasson; Federico Ariel; Christine Le Signor; David Baker; Ulrike Mathesius; Martin Crespi; Florian Frugier
Phytohormonal interactions are essential to regulate plant organogenesis. In response to the presence of signals from symbiotic bacteria, the Nod factors, legume roots generate a new organ: the nitrogen-fixing nodule. Analysis of mutants in the Medicago truncatula CRE1 cytokinin receptor and of the MtRR4 cytokinin primary response gene expression pattern revealed that cytokinin acts in initial cortical cell divisions and later in the transition between meristematic and differentiation zones of the mature nodule. MtCRE1 signaling is required for activation of the downstream nodulation-related transcription factors MtERN1, MtNSP2 and MtNIN, as well as to regulate expression and accumulation of PIN auxin efflux carriers. Whereas the MtCRE1 pathway is required to allow the inhibition of polar auxin transport in response to rhizobia, nodulation is still negatively regulated by the MtEIN2/SICKLE-dependent ethylene pathway in cre1 mutants. Hence, MtCRE1 signaling acts as a regulatory knob, integrating positive plant and bacterial cues to control legume nodule organogenesis.
Trends in Plant Science | 2008
Florian Frugier; Sonja Kosuta; Jeremy D. Murray; Martin Crespi; Krzysztof Szczyglowski
The symbiotic interaction between Rhizobium bacteria and legumes leads to the induction of a new root organ: the nitrogen-fixing nodule. Recent findings have uncovered that cytokinin is instrumental in this developmental process, but they also suggest a broader role for cytokinin in mediating rhizobial infection. In this opinion article, we propose that cytokinin is the key differentiation signal for nodule organogenesis. Furthermore, we discuss a model in which cytokinin might also influence bacterial infection by controlling the expression of NIN (Nodule Inception) and other transcriptional regulators through mechanisms operating both locally and systemically.
The Plant Cell | 2008
Tatiana Vernié; Sandra Moreau; Françoise de Billy; Julie Plet; Jean-Philippe Combier; Christian Rogers; Giles E. D. Oldroyd; Florian Frugier; Andreas Niebel; Pascal Gamas
Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development.
The Plant Cell | 2010
Federico Ariel; Anouck Diet; Marion Verdenaud; Véronique Gruber; Florian Frugier; Raquel L. Chan; Martin Crespi
Medicago truncatula HB1 is an HD-Zip transcription factor involved in the adaptive developmental response of root architecture to adverse environmental stresses. HB1 reduces lateral root emergence, likely by directly repressing the expression of an auxin-responsive transcription factor from the LBD family, LBD1. The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation–PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.
Science Signaling | 2008
Martin Crespi; Florian Frugier
Root nodule organogenesis in legumes is initiated by bacterial signals and directed by plant signaling pathways. The symbiotic interaction between Rhizobium bacteria and legume plants leads to the formation of a new organ emerging from their roots: the nitrogen-fixing nodule. These organs allow legumes, in contrast to cereals and other nonlegumes, to grow in the absence of nitrogen fertilizers, conferring a major agricultural advantage to these crops. Nodule organogenesis is triggered by specific bacterial signals, the Nod factors, and integrates plant developmental regulatory pathways to reactivate differentiated root cortical cells and initiate the formation of a de novo meristem, a plant stem cell niche. We review recent data showing how the transition from differentiated root cortical cells to meristematic cells leads to development of a new organ. Genetic analyses revealed crucial functions of bacterial Nod factors and the plant hormone cytokinin in nodule organogenesis. Genomic analysis of transcriptional networks activated during early nodulation identified additional regulators of this organogenesis, such as transcription factors and small regulatory RNAs or microRNAs. These pathways shed new light on nodule organogenesis and symbiotic nitrogen fixation in crops and in the acquisition of developmental plasticity by differentiated cells. The symbiotic interaction between Rhizobium bacteria and legume plants leads to the induction of a new developmental program: the formation of nitrogen-fixing root nodules. Nodulation is triggered by specific bacterial signals, the Nod factors, and integrates plant developmental regulatory pathways to reactivate differentiated cortical cells. This results in the formation of a de novo meristem, corresponding to a plant stem cell niche. Recent data have shown a crucial function of the phytohormone cytokinin and its signaling pathway in nodule initiation. Activation of either cytokinin or components of the Nod factor signaling pathway leads to spontaneous induction of the nodule organogenesis program. These genetic analyses have been complemented with genomic studies of transcriptional networks activated during early nodulation. Transcriptional and posttranscriptional regulation, notably involving transcription factors and microRNAs, fine-tune the dynamic equilibrium between proliferating meristematic and differentiated nitrogen-fixing cells. The recent identification of these regulatory mechanisms has helped elucidate nodule organogenesis and the agriculturally relevant process of symbiotic nitrogen fixation and extended our understanding of how differentiated root cells acquire developmental plasticity to form a new organ.
Genome Biology | 2009
Francisco Merchan; Adnane Boualem; Martin Crespi; Florian Frugier
BackgroundMicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered.ResultsWe performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins.ConclusionsIn addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes.
The Plant Cell | 2012
Federico Ariel; Marianne Brault-Hernandez; Carole Laffont; Emeline Huault; Mathias Brault; Julie Plet; Michaël Moison; Sandrine Blanchet; Jean Laurent Ichanté; Mireille Chabaud; Sébastien Carrère; Martin Crespi; Raquel L. Chan; Florian Frugier
In legume plants, cytokinins are necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. Biochemical and reverse genetic approaches identified two transcription factors from the GRAS (NSP2) and bHLH families as direct targets of cytokinin signaling pathways in legume roots. These transcription factors act at the convergence of phytohormonal and nodulation symbiotic cues. Cytokinin regulates many aspects of plant development, and in legume crops, this phytohormone is necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. To identify direct links between cytokinins and nodule organogenesis, we determined a consensus sequence bound in vitro by a transcription factor (TF) acting in cytokinin signaling, the nodule-enhanced Medicago truncatula Mt RR1 response regulator (RR). Among genes rapidly regulated by cytokinins and containing this so-called RR binding site (RRBS) in their promoters, we found the nodulation-related Type-A RR Mt RR4 and the Nodulation Signaling Pathway 2 (NSP2) TF. Site-directed mutagenesis revealed that RRBS cis-elements in the RR4 and NSP2 promoters are essential for expression during nodule development and for cytokinin induction. Furthermore, a microRNA targeting NSP2 (miR171 h) is also rapidly induced by cytokinins and then shows an expression pattern anticorrelated with NSP2. Other primary targets regulated by cytokinins depending on the Cytokinin Response1 (CRE1) receptor were a cytokinin oxidase/dehydrogenase (CKX1) and a basic Helix-Loop-Helix TF (bHLH476). RNA interference constructs as well as insertion of a Tnt1 retrotransposon in the bHLH gene led to reduced nodulation. Hence, we identified two TFs, NSP2 and bHLH476, as direct cytokinin targets acting at the convergence of phytohormonal and symbiotic cues.
Molecular Plant | 2012
Ons Zahaf; Sandrine Blanchet; Axel de Zélicourt; Benoı̂t Alunni; Julie Plet; Carole Laffont; Laura de Lorenzo; Sandrine Imbeaud; Jean-Laurent Ichanté; Anouck Diet; Mounawer Badri; Ana Zabalza; Esther M. González; Hervé Delacroix; Véronique Gruber; Florian Frugier; Martin Crespi
Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.