Florian Zink
deCODE genetics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian Zink.
Nature | 2008
Valur Emilsson; Gudmar Thorleifsson; Bin Zhang; Amy Leonardson; Florian Zink; Jun Zhu; Sonia Carlson; Agnar Helgason; G. Bragi Walters; Steinunn Gunnarsdottir; Magali Mouy; Valgerdur Steinthorsdottir; Gudrun H. Eiriksdottir; Gyda Bjornsdottir; Inga Reynisdottir; Daniel F. Gudbjartsson; Anna Helgadottir; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Kristinn P. Magnusson; Hreinn Stefansson; Ragnheidur Fossdal; Kristleifur Kristjansson; Hjörtur Gislason; Tryggvi Stefansson; Björn Geir Leifsson; Unnur Thorsteinsdottir; John Lamb
Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.
Nature Genetics | 2015
Daniel F. Gudbjartsson; Hannes Helgason; Sigurjon A. Gudjonsson; Florian Zink; Asmundur Oddson; Arnaldur Gylfason; Søren Besenbacher; Gisli Magnusson; Bjarni V. Halldórsson; Eirikur Hjartarson; Gunnar Sigurdsson; Simon N. Stacey; Michael L. Frigge; Hilma Holm; Jona Saemundsdottir; Hafdis T. Helgadottir; Hrefna Johannsdottir; Gunnlaugur Sigfússon; Gudmundur Thorgeirsson; Jon T. Sverrisson; Solveig Gretarsdottir; G. Bragi Walters; Thorunn Rafnar; Bjarni Thjodleifsson; Einar Björnsson; Sigurdur Olafsson; Hildur Thorarinsdottir; Thora Steingrimsdottir; Thora S. Gudmundsdottir; Ásgeir Theodórs
Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.
Nature Genetics | 2015
Patrick Sulem; Hannes Helgason; Asmundur Oddson; Hreinn Stefansson; Sigurjon A. Gudjonsson; Florian Zink; Eirikur Hjartarson; Gunnar Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Sigurdsson; Olafur T. Magnusson; Augustine Kong; Agnar Helgason; Hilma Holm; Unnur Thorsteinsdottir; Gisli Masson; Daniel F. Gudbjartsson; Kari Stefansson
Loss-of-function mutations cause many mendelian diseases. Here we aimed to create a catalog of autosomal genes that are completely knocked out in humans by rare loss-of-function mutations. We sequenced the whole genomes of 2,636 Icelanders and imputed the sequence variants identified in this set into 101,584 additional chip-genotyped and phased Icelanders. We found a total of 6,795 autosomal loss-of-function SNPs and indels in 4,924 genes. Of the genotyped Icelanders, 7.7% are homozygotes or compound heterozygotes for loss-of-function mutations with a minor allele frequency (MAF) below 2% in 1,171 genes (complete knockouts). Genes that are highly expressed in the brain are less often completely knocked out than other genes. Homozygous loss-of-function offspring of two heterozygous parents occurred less frequently than expected (deficit of 136 per 10,000 transmissions for variants with MAF <2%, 95% confidence interval (CI) = 10–261).
Blood | 2017
Florian Zink; Simon N. Stacey; Gudmundur L. Norddahl; Michael L. Frigge; Olafur T. Magnusson; Ingileif Jonsdottir; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Sigurjon A. Gudjonsson; Julius Gudmundsson; Jon G. Jonasson; Laufey Tryggvadottir; Thorvaldur Jonsson; Agnar Helgason; Arnaldur Gylfason; Patrick Sulem; Thorunn Rafnar; Unnur Thorsteinsdottir; Daniel F. Gudbjartsson; Gisli Masson; Augustine Kong; Kari Stefansson
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single dominant hematopoietic stem cell lineage. Somatic mutations in candidate driver (CD) genes are thought to be responsible for at least some cases of CH. Using whole-genome sequencing of 11 262 Icelanders, we found 1403 cases of CH by using barcodes of mosaic somatic mutations in peripheral blood, whether or not they have a mutation in a CD gene. We find that CH is very common in the elderly, trending toward inevitability. We show that somatic mutations in TET2, DNMT3A, ASXL1, and PPM1D are associated with CH at high significance. However, known CD mutations were evident in only a fraction of CH cases. Nevertheless, the highly prevalent CH we detect associates with increased mortality rates, risk for hematological malignancy, smoking behavior, telomere length, Y-chromosome loss, and other phenotypic characteristics. Modeling suggests some CH cases could arise in the absence of CD mutations as a result of neutral drift acting on a small population of active hematopoietic stem cells. Finally, we find a germline deletion in intron 3 of the telomerase reverse transcriptase (TERT) gene that predisposes to CH (rs34002450; P = 7.4 × 10-12; odds ratio, 1.37).
Nature Genetics | 2016
Gardar Sveinbjornsson; Anders Albrechtsen; Florian Zink; Sigurjon A. Gudjonsson; Asmundur Oddson; Gisli Masson; Hilma Holm; Augustine Kong; Unnur Thorsteinsdottir; Patrick Sulem; Daniel F. Gudbjartsson; Kari Stefansson
The consensus approach to genome-wide association studies (GWAS) has been to assign equal prior probability of association to all sequence variants tested. However, some sequence variants, such as loss-of-function and missense variants, are more likely than others to affect protein function and are therefore more likely to be causative. Using data from whole-genome sequencing of 2,636 Icelanders and the association results for 96 quantitative and 123 binary phenotypes, we estimated the enrichment of association signals by sequence annotation. We propose a weighted Bonferroni adjustment that controls for the family-wise error rate (FWER), using as weights the enrichment of sequence annotations among association signals. We show that this weighted adjustment increases the power to detect association over the standard Bonferroni correction. We use the enrichment of associations by sequence annotation we have estimated in Iceland to derive significance thresholds for other populations with different numbers and combinations of sequence variants.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Augustine Kong; Michael L. Frigge; Gudmar Thorleifsson; Hreinn Stefansson; Alexander I. Young; Florian Zink; Gudrun A. Jonsdottir; Aysu Okbay; Patrick Sulem; Gisli Masson; Daniel F. Gudbjartsson; Agnar Helgason; Gyda Bjornsdottir; Unnur Thorsteinsdottir; Kari Stefansson
Significance Epidemiological studies suggest that educational attainment is affected by genetic variants. Results from recent genetic studies allow us to construct a score from a person’s genotypes that captures a portion of this genetic component. Using data from Iceland that include a substantial fraction of the population we show that individuals with high scores tend to have fewer children, mainly because they have children later in life. Consequently, the average score has been decreasing over time in the population. The rate of decrease is small per generation but marked on an evolutionary timescale. Another important observation is that the association between the score and fertility remains highly significant after adjusting for the educational attainment of the individuals. Epidemiological and genetic association studies show that genetics play an important role in the attainment of education. Here, we investigate the effect of this genetic component on the reproductive history of 109,120 Icelanders and the consequent impact on the gene pool over time. We show that an educational attainment polygenic score, POLYEDU, constructed from results of a recent study is associated with delayed reproduction (P < 10−100) and fewer children overall. The effect is stronger for women and remains highly significant after adjusting for educational attainment. Based on 129,808 Icelanders born between 1910 and 1990, we find that the average POLYEDU has been declining at a rate of ∼0.010 standard units per decade, which is substantial on an evolutionary timescale. Most importantly, because POLYEDU only captures a fraction of the overall underlying genetic component the latter could be declining at a rate that is two to three times faster.
Nature Communications | 2015
Simon N. Stacey; Hannes Helgason; Sigurjon A. Gudjonsson; Gudmar Thorleifsson; Florian Zink; Asgeir Sigurdsson; Birte Kehr; Julius Gudmundsson; Patrick Sulem; Bardur Sigurgeirsson; Kristrun R. Benediktsdottir; Kristin Thorisdottir; Rafn Ragnarsson; Victoria Fuentelsaz; Cristina Corredera; Yolanda Gilaberte; Matilde Grasa; Dolores Planelles; Onofre Sanmartín; Peter Rudnai; Eugene Gurzau; Kvetoslava Koppova; Bjørn A. Nexø; Anne Tjønneland; Kim Overvad; Jon G. Jonasson; Laufey Tryggvadottir; Hrefna Johannsdottir; Anna M. Kristinsdottir; Hreinn Stefansson
In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10−12), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10−9), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10−12) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10−16). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained.
Scientific Data | 2015
Daniel F. Gudbjartsson; Patrick Sulem; Hannes Helgason; Arnaldur Gylfason; Sigurjon A. Gudjonsson; Florian Zink; Asmundur Oddson; Gisli Magnusson; Bjarni V. Halldórsson; Eirikur Hjartarson; Gunnar Sigurdsson; Augustine Kong; Agnar Helgason; Gisli Masson; Olafur T. Magnusson; Unnur Thorsteinsdottir; Kari Stefansson
We have accumulated considerable data on the genetic makeup of the Icelandic population by sequencing the whole genomes of 2,636 Icelanders to depth of at least 10X and by chip genotyping 101,584 more. The sequencing was done with Illumina technology. The median sequencing depth was 20X and 909 individuals were sequenced to a depth of at least 30X. We found 20 million single nucleotide polymorphisms (SNPs) and 1.5 million insertions/deletions (indels) that passed stringent quality control. Almost all the common SNPs (derived allele frequency (DAF) over 2%) that we identified in Iceland have been observed by either dbSNP (build 137) or the Exome Sequencing Project (ESP) while only 60 and 20% of rare (DAF<0.5%) SNPs and indels in coding regions, the most heavily studied parts of the genome, have been observed in the public databases. Features of our variant data, such as the transition/transversion ratio and the length distribution of indels, are similar to published reports.
Nature | 2017
Hákon Jónsson; Patrick Sulem; Birte Kehr; Snaedis Kristmundsdottir; Florian Zink; Eirikur Hjartarson; Marteinn T. Hardarson; Kristjan E. Hjorleifsson; Hannes P. Eggertsson; Sigurjon A. Gudjonsson; Lucas D. Ward; Gudny A. Arnadottir; Einar A. Helgason; Hannes Helgason; Arnaldur Gylfason; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Thorunn Rafnar; Mike Frigge; Simon N. Stacey; Olafur T. Magnusson; Unnur Thorsteinsdottir; Gisli Masson; Augustine Kong; Bjarni V. Halldórsson; Agnar Helgason; Daniel F. Gudbjartsson; Kari Stefansson
The characterization of mutational processes that generate sequence diversity in the human genome is of paramount importance both to medical genetics and to evolutionary studies. To understand how the age and sex of transmitting parents affect de novo mutations, here we sequence 1,548 Icelanders, their parents, and, for a subset of 225, at least one child, to 35× genome-wide coverage. We find 108,778 de novo mutations, both single nucleotide polymorphisms and indels, and determine the parent of origin of 42,961. The number of de novo mutations from mothers increases by 0.37 per year of age (95% CI 0.32–0.43), a quarter of the 1.51 per year from fathers (95% CI 1.45–1.57). The number of clustered mutations increases faster with the mother’s age than with the father’s, and the genomic span of maternal de novo mutation clusters is greater than that of paternal ones. The types of de novo mutation from mothers change substantially with age, with a 0.26% (95% CI 0.19–0.33%) decrease in cytosine–phosphate–guanine to thymine–phosphate–guanine (CpG>TpG) de novo mutations and a 0.33% (95% CI 0.28–0.38%) increase in C>G de novo mutations per year, respectively. Remarkably, these age-related changes are not distributed uniformly across the genome. A striking example is a 20 megabase region on chromosome 8p, with a maternal C>G mutation rate that is up to 50-fold greater than the rest of the genome. The age-related accumulation of maternal non-crossover gene conversions also mostly occurs within these regions. Increased sequence diversity and linkage disequilibrium of C>G variants within regions affected by excess maternal mutations indicate that the underlying mutational process has persisted in humans for thousands of years. Moreover, the regional excess of C>G variation in humans is largely shared by chimpanzees, less by gorillas, and is almost absent from orangutans. This demonstrates that sequence diversity in humans results from evolving interactions between age, sex, mutation type, and genomic location.
Nature Genetics | 2017
Daniel Wright; Felix R. Day; Nicola D. Kerrison; Florian Zink; Alexia Cardona; Patrick Sulem; Deborah Thompson; Svanhvit Sigurjonsdottir; Daniel F. Gudbjartsson; Agnar Helgason; J. Ross Chapman; Claudia Langenberg; Nicholas J. Wareham; Robert A. Scott; Unnur Thorsteindottir; Ken K. Ong; Kari Stefansson; John R. B. Perry
The Y chromosome is frequently lost in hematopoietic cells, which represents the most common somatic alteration in men. However, the mechanisms that regulate mosaic loss of chromosome Y (mLOY), and its clinical relevance, are unknown. We used genotype-array-intensity data and sequence reads from 85,542 men to identify 19 genomic regions (P < 5 × 10−8) that are associated with mLOY. Cumulatively, these loci also predicted X chromosome loss in women (n = 96,123; P = 4 × 10−6). Additional epigenome-wide methylation analyses using whole blood highlighted 36 differentially methylated sites associated with mLOY. The genes identified converge on aspects of cell proliferation and cell cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), mitosis (PMF1, CENPN and MAD1L1) and apoptosis (TP53). We highlight the shared genetic architecture between mLOY and cancer susceptibility, in addition to inferring a causal effect of smoking on mLOY. Collectively, our results demonstrate that genotype-array-intensity data enables a measure of cell cycle efficiency at population scale and identifies genes implicated in aneuploidy, genome instability and cancer susceptibility.