Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flurin Babst is active.

Publication


Featured researches published by Flurin Babst.


Global Change Biology | 2015

Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

Dorothe A. Frank; Markus Reichstein; Michael Bahn; Kirsten Thonicke; David Frank; Miguel D. Mahecha; Pete Smith; Marijn van der Velde; Sara Vicca; Flurin Babst; Christian Beer; Nina Buchmann; Josep G. Canadell; Philippe Ciais; Wolfgang Cramer; Andreas Ibrom; Franco Miglietta; Ben Poulter; Anja Rammig; Sonia I. Seneviratne; Ariane Walz; Martin Wattenbach; Miguel A. Zavala; Jakob Zscheischler

Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.


Global Change Biology | 2014

The influence of sampling design on tree-ring-based quantification of forest growth

Christoph Nehrbass-Ahles; Flurin Babst; Stefan Klesse; Magdalena Nötzli; Olivier Bouriaud; Raphael Neukom; Matthias Dobbertin; David Frank

Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The worlds most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree-ring-based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.


New Phytologist | 2014

Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites

Flurin Babst; Olivier Bouriaud; Dario Papale; Bert Gielen; Ivan A. Janssens; Eero Nikinmaa; Andreas Ibrom; Jian Wu; Christian Bernhofer; Barbara Köstner; Thomas Grünwald; Günther Seufert; Philippe Ciais; David Frank

• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.


Oecologia | 2014

A tree-ring perspective on the terrestrial carbon cycle

Flurin Babst; M. Ross Alexander; Paul Szejner; Olivier Bouriaud; Stefan Klesse; John S. Roden; Philippe Ciais; Benjamin Poulter; David Frank; David J. P. Moore; Valerie Trouet

Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.


Environmental Research Letters | 2012

500 years of regional forest growth variability and links to climatic extreme events in Europe

Flurin Babst; Marco Carrer; Benjamin Poulter; Carlo Urbinati; Burkhard Neuwirth; David Frank

Climatic extreme events strongly affect forest growth and thus significantly influence the inter-annual terrestrial carbon balance. As we are facing an increase in frequency and intensity of climate extremes, extensive empirical archives are required to assess continental scale impacts of temperature and precipitation anomalies. Here we divide a tree-ring network of approximately 1000 sites into fifteen groups of similar high-frequency growth variability to reconstruct regional positive and negative extreme events in different parts of Europe between 1500 and 2008. Synchronized growth maxima or minima within and among regions indicate eighteen years in the pre-instrumental period and two events in the 20th century (1948, 1976) with extensive radial growth fluctuations. Comparisons with instrumental data showed that the European tree-ring network mirrors the spatial extent of temperature and precipitation extremes, but the interpretation of pre-instrumental events is challenged by lagged responses to off-growing season climate extremes. We were able to attribute growth minima in subsequent years to unfavourable August‐October conditions and to mild climate during winter months associated with respiratory carbon losses. Our results emphasize the importance of carry-over effects and species-specific growth characteristics for forest productivity. Furthermore, they promote the use of regional tree-ring chronologies in research related to climate variability and terrestrial carbon sink dynamics.


Nature Ecology and Evolution | 2017

Improved tree-ring archives will support earth-system science

Flurin Babst; Benjamin Poulter; Paul Bodesheim; Miguel D. Mahecha; David Frank

A steep decline in archiving could make large tree-ring datasets irrelevant. But increased spatiotemporal coverage, the addition of novel parameters at sub-annual resolution, and integration with other in situ and remote Earth observations will elevate tree-ring data as an essential component of global-change research.


Journal of Geophysical Research | 2016

Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System

Paul Szejner; William E. Wright; Flurin Babst; Soumaya Belmecheri; Valerie Trouet; Steven W. Leavitt; James R. Ehleringer; Russell K. Monson

Macrosystems program in the Emerging Frontiers section of the U.S. National Science Foundation (NSF) [1065790]; Interuniversity Training Program in Continental-scale Ecology (NSF) [1137336]; Swiss National Science Foundation [P300P2_154543]


Nature Ecology and Evolution | 2017

Ecosystem functioning is enveloped by hydrometeorological variability

Christoforos Pappas; Miguel D. Mahecha; David Frank; Flurin Babst; Demetris Koutsoyiannis

Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate–biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model–data integration opportunities in Earth system sciences.The atmosphere and biosphere are intrinsically coupled systems. Here, the authors integrate multiple datasets from hourly to decadal timescales and show that a hydrometerological envelope constrains ecosystem variability through time.


Nature Communications | 2018

Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context

Valerie Trouet; Flurin Babst; M. Meko

A recent increase in mid-latitude extreme weather events has been linked to Northern Hemisphere polar jet stream anomalies. To put recent trends in a historical perspective, long-term records of jet stream variability are needed. Here we combine two tree-ring records from the British Isles and the northeastern Mediterranean to reconstruct variability in the latitudinal position of the high-summer North Atlantic Jet (NAJ) back to 1725 CE. We find that northward NAJ anomalies have resulted in heatwaves and droughts in northwestern Europe and southward anomalies have promoted wildfires in southeastern Europe. We further find an unprecedented increase in NAJ variance since the 1960s, which co-occurs with enhanced late twentieth century variance in the Central and North Pacific Basin. Our results suggest increased late twentieth century interannual meridional jet stream variability and support more sinuous jet stream patterns and quasi-resonant amplification as potential dynamic pathways for Arctic warming to influence mid-latitude weather.Long-term records of jet stream variability are needed to place recent mid-latitude extreme weather events into a historical context. Here, using tree-ring records from Europe, the authors reconstruct variability in the latitudinal position of the high-summer North Atlantic Jet since 1725 CE.


Trees-structure and Function | 2018

Relative influences of multiple sources of uncertainty on cumulative and incremental tree-ring-derived aboveground biomass estimates

M. Ross Alexander; Christine R. Rollinson; Flurin Babst; Valerie Trouet; David J. P. Moore

How forest growth responds to climate change will impact the global carbon cycle. The sensitivity of tree growth and thus forest productivity to climate can be inferred from tree-ring increments, but individual tree responses may differ from the overall forest response. Tree-ring data have also been used to estimate interannual variability in aboveground biomass, but a shortage of robust uncertainty estimates often limits comparisons with other measurements of the carbon cycle across variable ecological settings. Here we identify and quantify four important sources of uncertainty that affect tree-ring-based aboveground biomass estimates: subsampling, allometry, forest density (sampling), and mortality. In addition, we investigate whether transforming rings widths into biomass affects the underlying growth-climate relationships at two coniferous forests located in the Valles Caldera in northern New Mexico. Allometric and mortality sources of uncertainty contributed most (34–57 and 24–42%, respectively) and subsampling uncertainty least (7–8%) to the total uncertainty for cumulative biomass estimates. Subsampling uncertainty, however, was the largest source of uncertainty for year-to-year variations in biomass estimates, and its large contribution indicates that between-tree growth variability remains influential to changes in year-to-year biomass estimates for a stand. The effect of the large contribution of the subsampling uncertainty is reflected by the different climate responses of large and small trees. Yet, the average influence of climate on tree growth persisted through the biomass transformation, and the biomass growth-climate relationship is comparable to that found in traditional climate reconstruction-oriented tree-ring chronologies. Including the uncertainties in estimates of aboveground biomass will aid comparisons of biomass increment across disparate forests, as well as further the use of these data in vegetation modeling frameworks.

Collaboration


Dive into the Flurin Babst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Poulter

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Olivier Bouriaud

Ştefan cel Mare University of Suceava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsten Thonicke

Potsdam Institute for Climate Impact Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge