Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Folami Y. Ideraabdullah is active.

Publication


Featured researches published by Folami Y. Ideraabdullah.


Mutation Research | 2008

Genomic Imprinting Mechanisms in Mammals

Folami Y. Ideraabdullah; Marisa S. Bartolomei

Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generations germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.


Genetics | 2005

The Paternal Gene of the DDK Syndrome Maps to the Schlafen Gene Cluster on Mouse Chromosome 11

Timothy A. Bell; Elena de la Casa-Esperón; Heather E. Doherty; Folami Y. Ideraabdullah; Kuikwon Kim; Yunfei Wang; Leslie A. Lange; Kirk Wilhemsen; Ethan M. Lange; Carmen Sapienza; Fernando Pardo-Manuel de Villena

The DDK syndrome is an early embryonic lethal phenotype observed in crosses between females of the DDK inbred mouse strain and many non-DDK males. Lethality results from an incompatibility between a maternal DDK factor and a non-DDK paternal gene, both of which have been mapped to the Ovum mutant (Om) locus on mouse chromosome 11. Here we define a 465-kb candidate interval for the paternal gene by recombinant progeny testing. To further refine the candidate interval we determined whether males from 17 classical and wild-derived inbred strains are interfertile with DDK females. We conclude that the incompatible paternal allele arose in the Mus musculus domesticus lineage and that incompatible strains should share a common haplotype spanning the paternal gene. We tested for association between paternal allele compatibility/incompatibility and 167 genetic variants located in the candidate interval. Two diallelic SNPs, located in the Schlafen gene cluster, are completely predictive of the polar-lethal phenotype. These SNPs also predict the compatible or incompatible status of males of five additional strains.


Developmental Biology | 2011

Novel cis-regulatory function in ICR-mediated imprinted repression of H19.

Folami Y. Ideraabdullah; Lara K. Abramowitz; Joanne L. Thorvaldsen; Christopher Krapp; Sherry C. Wen; Nora Engel; Marisa S. Bartolomei

Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19(ICR∆IVS)), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19(ICR-8nrCG)), which only changes CpG content at the ICR. Individually, both mutant alleles (H19(ICR∆IVS) and H19(ICR-8nrCG)) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.


Human Molecular Genetics | 2014

Tissue specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region

Folami Y. Ideraabdullah; Joanne L. Thorvaldsen; Jennifer A. Myers; Marisa S. Bartolomei

Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.


Journal of Nutritional Biochemistry | 2016

An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation

Jing Xue; Folami Y. Ideraabdullah

In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors, (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data, we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators, and many of the diet-induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes and toxicants that contribute to obesity and obesity-related phenotypes.


Molecular Cell | 2011

ZFP57: KAPturing DNA Methylation at Imprinted Loci

Folami Y. Ideraabdullah; Marisa S. Bartolomei

In this issue of Molecular Cell, Quenneville et al. (2011) characterize the role of ZFP57 in the maintenance of DNA methylation at imprinting control regions (ICRs), revealing an allele-specific binding pattern, binding motif, and interactions with other epigenetic regulators.


Biology of Reproduction | 2007

Rescue of the Mouse DDK Syndrome by Parent-of-Origin-Dependent Modifiers

Folami Y. Ideraabdullah; Kuikwon Kim; Daniel Pomp; Jennifer L. Moran; David R. Beier; Fernando Pardo-Manuel de Villena

Abstract When females of the DDK inbred mouse strain are mated to males of other strains, 90–100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes

Stella K. Hur; Andrea Freschi; Folami Y. Ideraabdullah; Joanne L. Thorvaldsen; Lacey J. Luense; Angela H. Weller; Shelley L. Berger; Flavia Cerrato; Andrea Riccio; Marisa S. Bartolomei

Significance Genomic imprinting is essential for mammalian development. Curiously, elements that regulate genomic imprinting, the imprinting control regions (ICRs), often diverge across species. To understand whether the diverged ICR sequence plays a species-specific role at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, we generated a mouse in which the human ICR (hIC1) sequence replaced the endogenous mouse ICR. We show that the imprinting mechanism has partially diverged between mouse and human, depending on the parental origin of the hIC1 in mouse. We also suggest that our mouse model is optimal for studying the imprinting disorders Beckwith–Wiedemann syndrome when hIC1 is maternally transmitted, and Silver–Russell syndrome when hIC1 is paternally transmitted. Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19+/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS.


Current Pediatrics Reports | 2013

Maternal Nutrition and Epigenetic Perturbation: Modeling Trends to Translation

Judy L. Oakes; Folami Y. Ideraabdullah

Maternal nutrition plays an essential role in offspring health and development. Critical stages include: (1) preconception, affecting oocyte development and uterine environment preparation; (2) gestation, affecting uterine environment and placental nutrient transfer and (3) postnatal, through lactation. It remains debatable which stage is most important, but arguably, the most complex cellular events occur during gestation. During this time, embryo development requires a well orchestrated and tightly regulated cascade of genetic, molecular and biochemical events. Among these are epigenetic events necessary for gene expression regulation. These produce heritable yet often reversible states established based on transcriptional needs of the cell. A growing body of research highlights the role of maternal nutrition in determining epigenetic states important for pre- and postnatal development. Here, we discuss recent findings addressing epigenetic response to nutrition with relevance to developmental origins of phenotypic outcome.


Reproductive Toxicology | 2018

Intergenerational response to the endocrine disruptor vinclozolin is influenced by maternal genotype and crossing scheme

Edward W. Pietryk; Kiristin Clement; Marwa Elnagheeb; Ryan Kuster; Kayla Kilpatrick; Michael I. Love; Folami Y. Ideraabdullah

In utero exposure to vinclozolin (VIN), an antiandrogenic fungicide, is linked to multigenerational phenotypic and epigenetic effects. Mechanisms remain unclear. We assessed the role of antiandrogenic activity and DNA sequence context by comparing effects of VIN vs. M2 (metabolite with greater antiandrogenic activity) and wild-type C57BL/6 (B6) mice vs. mice carrying mutations at the previously reported VIN-responsive H19/Igf2 locus. First generation offspring from VIN-treated 8nrCG mutant dams exhibited increased body weight and decreased sperm ICR methylation. Second generation pups sired by affected males exhibited decreased neonatal body weight but only when dam was unexposed. Offspring from M2 treatments, B6 dams, 8nrCG sires or additional mutant lines were not similarly affected. Therefore, pup response to VIN over two generations detected here was an 8nrCG-specific maternal effect, independent of antiandrogenic activity. These findings demonstrate that maternal effects and crossing scheme play a major role in multigenerational response to in utero exposures.

Collaboration


Dive into the Folami Y. Ideraabdullah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Pardo-Manuel de Villena

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jing Xue

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kuikwon Kim

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Timothy A. Bell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Detwiler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Edward W. Pietryk

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge