Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy A. Bell is active.

Publication


Featured researches published by Timothy A. Bell.


Nature Genetics | 2011

Subspecific origin and haplotype diversity in the laboratory mouse

Hyuna Yang; Jeremy R. Wang; John P. Didion; Ryan J. Buus; Timothy A. Bell; Catherine E. Welsh; Franãois Bonhomme; Alex Hon-Tsen Yu; Michael W. Nachman; Jaroslav Piálek; Priscilla K. Tucker; Pierre Boursot; Leonard McMillan; Gary A. Churchill; Fernando Pardo-Manuel de Villena

Here we provide a genome-wide, high-resolution map of the phylogenetic origin of the genome of most extant laboratory mouse inbred strains. Our analysis is based on the genotypes of wild-caught mice from three subspecies of Mus musculus. We show that classical laboratory strains are derived from a few fancy mice with limited haplotype diversity. Their genomes are overwhelmingly Mus musculus domesticus in origin, and the remainder is mostly of Japanese origin. We generated genome-wide haplotype maps based on identity by descent from fancy mice and show that classical inbred strains have limited and non-randomly distributed genetic diversity. In contrast, wild-derived laboratory strains represent a broad sampling of diversity within M. musculus. Intersubspecific introgression is pervasive in these strains, and contamination by laboratory stocks has played a role in this process. The subspecific origin, haplotype diversity and identity by descent maps can be visualized using the Mouse Phylogeny Viewer (see URLs).


Nature Genetics | 2007

On the subspecific origin of the laboratory mouse

Hyuna Yang; Timothy A. Bell; Gary A. Churchill; Fernando Pardo-Manuel de Villena

The genome of the laboratory mouse is thought to be a mosaic of regions with distinct subspecific origins. We have developed a high-resolution map of the origin of the laboratory mouse by generating 25,400 phylogenetic trees at 100-kb intervals spanning the genome. On average, 92% of the genome is of Mus musculus domesticus origin, and the distribution of diversity is markedly nonrandom among the chromosomes. There are large regions of extremely low diversity, which represent blind spots for studies of natural variation and complex traits, and hot spots of diversity. In contrast with the mosaic model, we found that most of the genome has intermediate levels of variation of intrasubspecific origin. Finally, mouse strains derived from the wild that are supposed to represent different mouse subspecies show substantial intersubspecific introgression, which has strong implications for evolutionary studies that assume these are pure representatives of a given subspecies.


Genome Research | 2011

Genetic analysis of complex traits in the emerging Collaborative Cross

David L. Aylor; William Valdar; Wendy Foulds-Mathes; Ryan J. Buus; Ricardo A. Verdugo; Ralph S. Baric; Martin T. Ferris; Jeffrey A. Frelinger; Mark T. Heise; Matt Frieman; Lisa E. Gralinski; Timothy A. Bell; John D. Didion; Kunjie Hua; Derrick L. Nehrenberg; Christine L. Powell; Jill Steigerwalt; Yuying Xie; Samir N. Kelada; Francis S. Collins; Ivana V. Yang; David A. Schwartz; Lisa A. Branstetter; Elissa J. Chesler; Darla R. Miller; Jason S. Spence; Eric Yi Liu; Leonard McMillan; Abhishek Sarkar; Jeremy Wang

The Collaborative Cross (CC) is a mouse recombinant inbred strain panel that is being developed as a resource for mammalian systems genetics. Here we describe an experiment that uses partially inbred CC lines to evaluate the genetic properties and utility of this emerging resource. Genome-wide analysis of the incipient strains reveals high genetic diversity, balanced allele frequencies, and dense, evenly distributed recombination sites-all ideal qualities for a systems genetics resource. We map discrete, complex, and biomolecular traits and contrast two quantitative trait locus (QTL) mapping approaches. Analysis based on inferred haplotypes improves power, reduces false discovery, and provides information to identify and prioritize candidate genes that is unique to multifounder crosses like the CC. The number of expression QTLs discovered here exceeds all previous efforts at eQTL mapping in mice, and we map local eQTL at 1-Mb resolution. We demonstrate that the genetic diversity of the CC, which derives from random mixing of eight founder strains, results in high phenotypic diversity and enhances our ability to map causative loci underlying complex disease-related traits.


Nature Methods | 2009

A customized and versatile high-density genotyping array for the mouse.

Hyuna Yang; Yueming Ding; Lucie N. Hutchins; Jin P. Szatkiewicz; Timothy A. Bell; Beverly Paigen; Joel H. Graber; Fernando Pardo-Manuel de Villena; Gary A. Churchill

We designed a high-density mouse genotyping array containing 623,124 single-nucleotide polymorphisms that captures the known genetic variation present in the laboratory mouse. The array also contains 916,269 invariant genomic probes targeted to functional elements and regions known to harbor segmental duplications. The array opens the door to the characterization of genetic diversity, copy-number variation, allele-specific gene expression and DNA methylation, and will extend the successes of human genome-wide association studies to the mouse.


PLOS Pathogens | 2013

Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross

Martin T. Ferris; David L. Aylor; Daniel Bottomly; Alan C. Whitmore; Lauri D. Aicher; Timothy A. Bell; Birgit G. Bradel-Tretheway; Janine T. Bryan; Ryan J. Buus; Lisa E. Gralinski; Bart L. Haagmans; Leonard McMillan; Darla R. Miller; Elizabeth Rosenzweig; William Valdar; Jeremy Wang; Gary A. Churchill; David W. Threadgill; Shannon McWeeney; Michael G. Katze; Fernando Pardo-Manuel de Villena; Ralph S. Baric; Mark T. Heise

Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss.


Nature Genetics | 2015

Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance

James J. Crowley; Vasyl Zhabotynsky; Wei Sun; Shunping Huang; Isa Kemal Pakatci; Yunjung Kim; Jeremy R. Wang; Andrew P. Morgan; John D. Calaway; David L. Aylor; Zaining Yun; Timothy A. Bell; Ryan J. Buus; Mark Calaway; John P. Didion; Terry J. Gooch; Stephanie D. Hansen; Nashiya N. Robinson; Ginger D. Shaw; Jason S. Spence; Corey R. Quackenbush; Cordelia J. Barrick; Randal J. Nonneman; Kyungsu Kim; James Xenakis; Yuying Xie; William Valdar; Alan B. Lenarcic; Wei Wang; Catherine E. Welsh

Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a new global allelic imbalance in expression favoring the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.


PLOS Genetics | 2015

Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross.

Lisa E. Gralinski; Martin T. Ferris; David L. Aylor; Alan C. Whitmore; Richard Green; Matthew B. Frieman; Damon Deming; Vineet D. Menachery; Darla R. Miller; Ryan J. Buus; Timothy A. Bell; Gary A. Churchill; David W. Threadgill; Michael G. Katze; Leonard McMillan; William Valdar; Mark T. Heise; Fernando Pardo-Manuel de Villena; Ralph S. Baric

New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.


Genes and Immunity | 2014

Using the emerging Collaborative Cross to probe the immune system

J. Phillippi; Yuying Xie; Darla R. Miller; Timothy A. Bell; Zhaojun Zhang; Alan B. Lenarcic; David L. Aylor; S. H. Krovi; David W. Threadgill; F. Pardo-Manuel De Villena; Wei Wang; William Valdar; Jeffrey A. Frelinger

The Collaborative Cross (CC) is an emerging panel of recombinant inbred (RI) mouse strains. Each strain is genetically distinct but all descended from the same eight inbred founders. In 66 strains from incipient lines of the CC (pre-CC), as well as the 8 CC founders and some of their F1 offspring, we examined subsets of lymphocytes and antigen-presenting cells. We found significant variation among the founders, with even greater diversity in the pre-CC. Genome-wide association using inferred haplotypes detected highly significant loci controlling B-to-T cell ratio, CD8 T-cell numbers, CD11c and CD23 expression. Comparison of overall strain effects in the CC founders with strain effects at QTL in the pre-CC revealed sharp contrasts in the genetic architecture of two traits with significant loci: variation in CD23 can be explained largely by additive genetics at one locus, whereas variation in B-to-T ratio has a more complex etiology. For CD23, we found a strong QTL whose confidence interval contained the CD23 structural gene Fcer2a. Our data on the pre-CC demonstrate the utility of the CC for studying immunophenotypes and the value of integrating founder, CC and F1 data. The extreme immunophenotypes observed could have pleiotropic effects in other CC experiments.


G3: Genes, Genomes, Genetics | 2016

The Mouse Universal Genotyping Array: From Substrains to Subspecies

Andrew P. Morgan; Chen Ping Fu; Chia Yu Kao; Catherine E. Welsh; John P. Didion; Liran Yadgary; Leeanna Hyacinth; Martin T. Ferris; Timothy A. Bell; Darla R. Miller; Paola Giusti-Rodriguez; Randal J. Nonneman; Kevin D. Cook; Jason K. Whitmire; Lisa E. Gralinski; Mark P. Keller; Alan D. Attie; Gary A. Churchill; Petko M. Petkov; Patrick F. Sullivan; J. Brennan; Leonard McMillan; Fernando Pardo-Manuel de Villena

Genotyping microarrays are an important resource for genetic mapping, population genetics, and monitoring of the genetic integrity of laboratory stocks. We have developed the third generation of the Mouse Universal Genotyping Array (MUGA) series, GigaMUGA, a 143,259-probe Illumina Infinium II array for the house mouse (Mus musculus). The bulk of the content of GigaMUGA is optimized for genetic mapping in the Collaborative Cross and Diversity Outbred populations, and for substrain-level identification of laboratory mice. In addition to 141,090 single nucleotide polymorphism probes, GigaMUGA contains 2006 probes for copy number concentrated in structurally polymorphic regions of the mouse genome. The performance of the array is characterized in a set of 500 high-quality reference samples spanning laboratory inbred strains, recombinant inbred lines, outbred stocks, and wild-caught mice. GigaMUGA is highly informative across a wide range of genetically diverse samples, from laboratory substrains to other Mus species. In addition to describing the content and performance of the array, we provide detailed probe-level annotation and recommendations for quality control.


Genetics | 2017

Genomes of the Mouse Collaborative Cross

Anuj Srivastava; Andrew P. Morgan; Maya L. Najarian; Vishal Kumar Sarsani; J. Sebastian Sigmon; John R. Shorter; Anwica Kashfeen; Rachel C. McMullan; Lucy H. Williams; Paola Giusti-Rodriguez; Martin T. Ferris; Patrick F. Sullivan; Pablo Hock; Darla R. Miller; Timothy A. Bell; Leonard McMillan; Gary A. Churchill; Fernando Pardo-Manuel de Villena

The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources.

Collaboration


Dive into the Timothy A. Bell's collaboration.

Top Co-Authors

Avatar

Fernando Pardo-Manuel de Villena

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Morgan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Darla R. Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Leonard McMillan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David L. Aylor

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

John P. Didion

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Rachel C. McMullan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elissa J. Chesler

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Kunjie Hua

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge