Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Forbes D. Porter is active.

Publication


Featured researches published by Forbes D. Porter.


Nature Genetics | 2003

A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis

Michael K. Cooper; Christopher A. Wassif; Patrycja A. Krakowiak; Jussi Taipale; Ruoyu Gong; Richard I. Kelley; Forbes D. Porter; Philip A. Beachy

Smith–Lemli–Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we report that response to the Hh signal is compromised in mutant cells from mouse models of SLOS and lathosterolosis and in normal cells pharmacologically depleted of sterols. We show that decreasing levels of cellular sterols correlate with diminishing responsiveness to the Hh signal. This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct. We further find that sterol depletion affects the activity of Smoothened (Smo), an essential component of the Hh signal transduction apparatus.


Nature | 2000

The LIM homeobox gene Lhx9 is essential for mouse gonad formation.

Ohad S. Birk; Delane E. Casiano; Christopher A. Wassif; Tiziana Cogliati; Liping Zhao; Yangu Zhao; Alexander Grinberg; Sing-Ping Huang; Jordan A. Kreidberg; Keith L. Parker; Forbes D. Porter; Heiner Westphal

During mammalian embryonic development, the ovaries and testes develop from somatic cells of the urogenital ridges as indifferent gonads, harbouring primordial germ cells that have migrated there. After sex determination of the gonads, the testes produce testosterone and anti-Mullerian hormone which mediate male sexual differentiation, and the female developmental pathway ensues in their absence. Here we show that transcripts of the LIM homeobox gene Lhx9 are present in urogenital ridges of mice at embryonic day 9.5; later they localize to the interstitial region as morphological differentiation occurs. In mice lacking Lhx9 function, germ cells migrate normally, but somatic cells of the genital ridge fail to proliferate and a discrete gonad fails to form. In the absence of testosterone and anti-Mullerian hormone, genetically male mice are phenotypically female. The expression of steroidogenic factor 1 (Sf1), a nuclear receptor essential for gonadogenesis, is reduced to minimal levels in the Lhx9-deficient genital ridge, indicating that Lhx9 may lie upstream of Sf1 in a developmental cascade. Unlike mice lacking other genes that mediate early stages of gonadogenesis, Lhx9 mutants do not exhibit additional major developmental defects. Thus, LHX9 mutations may underlie certain forms of isolated gonadal agenesis in humans.


Neuron | 2001

Patterning of the Dorsal Telencephalon and Cerebral Cortex by a Roof Plate-Lhx2 Pathway

Edwin S. Monuki; Forbes D. Porter; Christopher A. Walsh

The organizing centers and molecules that pattern the cerebral cortex have been elusive. Here we show that cortical patterning involves regulation of the Lhx2 homeobox gene by the roof plate. Roof plate ablation results in reduced cortical size and Lhx2 expression defects that implicate roof plate signals in the bimodal regulation of Lhx2 in vivo. Bimodal Lhx2 regulation can be recapitulated in explants using two roof plate-derived signaling molecules, Bmp4 and Bmp2. Loss of Lhx2 function results in profound losses of cortical progenitors and neurons, but Lhx2 mutants continue to generate cortical neurons from dorsal sources that may include the roof plate region itself. These findings provide evidence for the roof plate as an organizing center of the developing cortex and for a roof plate-Lhx2 pathway in cortical patterning.


Journal of Lipid Research | 2011

Malformation syndromes caused by disorders of cholesterol synthesis

Forbes D. Porter; Gail E. Herman

Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.


Science Translational Medicine | 2010

Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease

Forbes D. Porter; David E. Scherrer; Michael H. Lanier; S. Joshua Langmade; Vasumathi Molugu; Sarah E. Gale; Dana Olzeski; Rohini Sidhu; Dennis J. Dietzen; Rao Fu; Christopher A. Wassif; Nicole M. Yanjanin; Steven P. Marso; John A. House; Charles H. Vite; Jean E. Schaffer; Daniel S. Ory

Oxysterols are biomarkers for diagnosis and drug treatment in Niemann-Pick C1 disease. Turning the Tables on Cholesterol A big push in disease research is to identify biochemical markers (biomarkers) in the blood that are early indicators of a disease that is already silently under way. By detecting the disease in its earliest stages, drugs and other therapeutic interventions have the best chance of halting or reversing the course of the disease before major tissue damage has been done. In a new study, Porter and colleagues set out to identify blood biomarkers for Niemann-Pick C1, a childhood neurological disease that is usually fatal. Niemann-Pick C1 disease is caused by mutations in the NPC1 or NPC2 proteins that result in mishandling of cholesterol and lipids in the endolysosomal system of cells. This leads to aberrant deposition of free cholesterol in the central nervous system, the death of neurons, and increasing motor and intellectual impairment, usually resulting in death during adolescence. The early symptoms of the disease are often difficult to distinguish from other childhood diseases, and thus, intervention in the form of a drug such as miglustat often comes too late. This prompted Porter and coworkers to search for possible molecules in the blood that could be used for early diagnosis of the disease and also to monitor the effectiveness of new drugs. On the basis of reports that aberrantly deposited free cholesterol is associated with increased oxidative stress, these investigators reasoned that cholesterol oxidation products (oxysterols) might be the long-sought biomarkers for Niemann-Pick C1 disease. Working in mice lacking the Npc1 gene, the researchers quickly identified two oxysterols that were markedly elevated in the plasma and tissues of the sick mice but not their healthy counterparts. Furthermore, the concentrations of these two oxysterols increased as the disease progressed. Moving into cats carrying an NPC1 mutation, which exhibit similar disease symptoms and progression as human patients, Porter and coworkers were able to decrease elevated concentrations of the two oxysterols and ameliorate disease symptoms by treating the animals with the experimental drug cyclodextrin. But could oxysterols be used as biomarkers in the human disease? The investigators demonstrated that the blood concentrations of two related oxysterol molecules were almost 10 times higher in Niemann-Pick C1 patients than in age-matched healthy controls or those with other diseases such as atherosclerosis or diabetes. Together, these compelling results suggest that the two oxysterol molecules are accurate diagnostic markers of early clinical disease and can be used not only to monitor disease progression but also to demonstrate drug efficacy. Free cholesterol may be at the root of Niemann-Pick C1 disease, but now, there is a way to turn the tables on cholesterol by using its oxidation products to diagnose and treat the disease in its earliest stages. Niemann-Pick type C1 (NPC1) disease is a rare progressive neurodegenerative disorder characterized by accumulation of cholesterol in the endolysosomes. Previous studies implicating oxidative stress in NPC1 disease pathogenesis raised the possibility that nonenzymatic formation of cholesterol oxidation products could serve as disease biomarkers. We measured these metabolites in the plasma and tissues of the Npc1−/− mouse model and found several cholesterol oxidation products that were elevated in Npc1−/− mice, were detectable before the onset of symptoms, and were associated with disease progression. Nonenzymatically formed cholesterol oxidation products were similarly increased in the plasma of all human NPC1 subjects studied and delineated an oxysterol profile specific for NPC1 disease. This oxysterol profile also correlated with the age of disease onset and disease severity. We further show that the plasma oxysterol markers decreased in response to an established therapeutic intervention in the NPC1 feline model. These cholesterol oxidation products are robust blood-based biochemical markers for NPC1 disease that may prove transformative for diagnosis and treatment of this disorder, and as outcome measures to monitor response to therapy.


Journal of Lipid Research | 2011

A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma

Xuntian Jiang; Rohini Sidhu; Forbes D. Porter; Nicole M. Yanjanin; Anneliese O. Speak; Danielle Taylor te Vruchte; Frances M. Platt; Hideji Fujiwara; David E. Scherrer; Jessie Zhang; Dennis J. Dietzen; Jean E. Schaffer; Daniel S. Ory

Niemann-Pick type C1 (NPC1) disease is a rare, progressively fatal neurodegenerative disease for which there are no FDA-approved therapies. A major barrier to developing new therapies for this disorder has been the lack of a sensitive and noninvasive diagnostic test. Recently, we demonstrated that two cholesterol oxidation products, specifically cholestane-3β,5α,6β-triol (3β,5α,6β-triol) and 7-ketocholesterol (7-KC), were markedly increased in the plasma of human NPC1 subjects, suggesting a role for these oxysterols in diagnosis of NPC1 disease and evaluation of therapeutics in clinical trials. In the present study, we describe the development of a sensitive and specific LC-MS/MS method for quantifying 3β,5α,6β-triol and 7-KC human plasma after derivatization with N,N-dimethylglycine. We show that dimethylglycine derivatization successfully enhanced the ionization and fragmentation of 3β,5α,6β-triol and 7-KC for mass spectrometric detection of the oxysterol species in human plasma. The oxysterol dimethylglycinates were resolved with high sensitivity and selectivity, and enabled accurate quantification of 3β,5α,6β-triol and 7-KC concentrations in human plasma. The LC-MS/MS assay was able to discriminate with high sensitivity and specificity between control and NPC1 subjects, and offers for the first time a noninvasive, rapid, and highly sensitive method for diagnosis of NPC1 disease.


Journal of Clinical Investigation | 2002

Malformation syndromes due to inborn errors of cholesterol synthesis

Forbes D. Porter

Cholesterol has long been known to function as both a structural lipid and a precursor molecule for bile acid and steroid hormone synthesis. In addition, this ubiquitous lipid is now known to contribute fundamentally to the development and function of the CNS and the bones, and, as detailed in other articles in this Perspective series, it plays major roles in signal transduction, sperm development, and embryonic morphogenesis. Over the past decade, the identification of multiple congenital anomaly/mental retardation syndromes due to inborn errors of cholesterol synthesis has underscored the importance of cholesterol synthesis in normal development. The prototypical example of a human malformation syndrome that results from a defect in cholesterol synthesis is the RSH/Smith-Lemli-Opitz syndrome (SLOS). To date, five additional human syndromes resulting from impaired cholesterol synthesis have been described. These include desmosterolosis, X-linked dominant chondrodysplasia punctata type 2 (CDPX2), CHILD syndrome (congenital hemidysplasia with ichthyosiform erythroderma/nevus and limb defects), Greenberg dysplasia, and, most recently, Antley-Bixler syndrome. Natural mouse mutations corresponding to CDPX2 (tattered) and CHILD syndrome (bare patches and striated) have been identified, and mouse models corresponding to SLOS and lathosterolosis have been produced by gene disruption. Identification of the biochemical defects present in these disorders has given insight into the role that cholesterol plays in normal embryonic development, has provided the initial step in understanding the pathophysiological processes underlying these malformation syndromes, and has given rise to treatment protocols for patients with SLOS. Cholesterol is synthesized from lanosterol, the first sterol in the cholesterol synthesis pathway, via a series of enzymatic reactions shown in Figure 1. These include the demethylation at C4α, C4β, and C14, which converts the C30 molecule lanosterol to C27 cholesterol; isomerization of the ∆ 8(9) double bond to a ∆ 7 double bond; desaturation to form a ∆ 5 double bond; and finally, reduction of ∆ 14 , ∆ 24 , and ∆ 7 double bonds (Figure 1). Analyses of human and murine syndromes resulting from cholesterol synthetic defects have helped illuminate both the normal functions of cholesterol and a range of normal and teratogenic functions of the various precursor sterols that accumulate in these disorders. Here, I consider the clinical, molecular, biochemical, and developmental aspects of these disorders, focusing on the five malformation syndromes presented in Table 1.


Journal of Biological Chemistry | 1999

Use of the Cre/lox Recombination System to Develop a Non-lethal Knock-in Murine Model for Osteogenesis Imperfecta with an α1(I) G349C Substitution VARIABILITY IN PHENOTYPE IN BrtlIV MICE

Antonella Forlino; Forbes D. Porter; Eric Lee; Heiner Westphal; Joan C. Marini

We utilized the Cre/lox recombination system to develop the first knock-in murine model for osteogenesis imperfecta (OI). The moderately severe OI phenotype was obtained from an α1(I) Gly349 → Cys substitution in type I collagen, reproducing the mutation in a type IV OI child. We introduced four single nucleotide (nt) changes into murine col1a1 exon 23: the disease causing G→T transversion (nt 1546), an adjacent G→T change (nt 1551) to generate a GUC ribozyme cleavage site, and two transversions (nt 1567 C→A and nt 1569 C→G) to cause a Leu → Met substitution. We also introduced a 3.2-kilobase pair transcription/translation stop cassette in intron 22, flanked by directly repeating loxrecombination sites. After homologous recombination in ES cells, two male chimeras were obtained. Chimeras were mated with transgenic females expressing Cre recombinase to remove the stop cassette from a portion of the progenys cells. To generate mice with full expression of the Gly349 → Cys mutation, these offspring were then mated with wild-type females. Skeletal staining and bone histology of the F2 revealed a classical OI phenotype with deformity, fragility, osteoporosis and disorganized trabecular structure. We designate these mice BrtlIV (Brittle IV). BrtlIV mice have phenotypic variability ranging from perinatal lethality to long term survival with reproductive success. The phenotypic variability is not associated with differences in expression levels of the mutant allele in total RNA derived from tissue extracts. Expression of the mutant protein is also equivalent in different phenotypes. Thus, these mice are an excellent model for delineation of the modifying factors postulated to affect human OI phenotypes. In addition, we generated knock-in mice carrying an “intronic” inclusion by mating chimeras with wild-type females. Alternative splicing involving the stop cassette results in retention of non-collagenous sequences. These mice reproduce the lethal phenotype of similar human mutations and are designated BrtlII.


American Journal of Medical Genetics | 2009

Linear clinical progression, independent of age of onset, in Niemann–Pick disease, type C†

Nicole M. Yanjanin; Jorge I. Vélez; Andrea Gropman; Kelly A. King; Simona Bianconi; Sandra K. Conley; Carmen C. Brewer; Beth Solomon; William J. Pavan; Mauricio Arcos-Burgos; Marc C. Patterson; Forbes D. Porter

Niemann–Pick disease, type C is a neurodegenerative, lysosomal storage disorder with a broad clinical spectrum and a variable age of onset. The absence of a universally accepted clinical outcome measure is an impediment to the design of a therapeutic trial for NPC. Thus, we developed a clinical severity scale to characterize and quantify disease progression. Clinical signs and symptoms in nine major (ambulation, cognition, eye movement, fine motor, hearing, memory, seizures, speech, and swallowing) and eight minor (auditory brainstem response, behavior, gelastic cataplexy, hyperreflexia, incontinence, narcolepsy, psychiatric, and respiratory problems) domains were scored. Data were collected from 18 current NPC patients and were extracted from records of 19 patients. Both patient cohorts showed a linear increase in severity scores over time. Cross‐sectional evaluation of current patients showed a linear increase in the severity score. Longitudinal chart review of historical data demonstrated that although age of onset varied significantly, the rate of progression appeared linear, independent of age of onset, and similar in all patients. Combining the data from both cohorts, disease progression could be modeled by the following equation: Ŝt0+x = Ŝt0 + 1.87x; where Ŝt0 is the initial score and Ŝt0+x is the predicted future score after x years. Our observation that disease progression is similar across patients and independent of age of onset is consistent with a biphasic pathological model for NPC. This scale may prove useful in the characterization of potential biomarkers, and as an outcome measure to monitor disease progression in NPC patients.


Genetics in Medicine | 2016

High incidence of unrecognized visceral/neurological late-onset Niemann-Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets

Christopher A. Wassif; Joanna L. Cross; James R. Iben; Luis Sanchez-Pulido; Antony Cougnoux; Frances M. Platt; Daniel S. Ory; Chris P. Ponting; Joan E. Bailey-Wilson; Leslie G. Biesecker; Forbes D. Porter

Purpose:Niemann-Pick disease type C (NPC) is a recessive, neurodegenerative, lysosomal storage disease caused by mutations in either NPC1 or NPC2. The diagnosis is difficult and frequently delayed. Ascertainment is likely incomplete because of both these factors and because the full phenotypic spectrum may not have been fully delineated. Given the recent development of a blood-based diagnostic test and the development of potential therapies, understanding the incidence of NPC and defining at-risk patient populations are important.Method:We evaluated data from four large, massively parallel exome sequencing data sets. Variant sequences were identified and classified as pathogenic or nonpathogenic based on a combination of literature review and bioinformatic analysis. This methodology provided an unbiased approach to determining the allele frequency.Results:Our data suggest an incidence rate for NPC1 and NPC2 of 1/92,104 and 1/2,858,998, respectively. Evaluation of common NPC1 variants, however, suggests that there may be a late-onset NPC1 phenotype with a markedly higher incidence, on the order of 1/19,000-1/36,000.Conclusion:We determined a combined incidence of classical NPC of 1/89,229, or 1.12 affected patients per 100,000 conceptions, but predict incomplete ascertainment of a late-onset phenotype of NPC1. This finding strongly supports the need for increased screening of potential patients.Genet Med 18 1, 41–48.

Collaboration


Dive into the Forbes D. Porter's collaboration.

Top Co-Authors

Avatar

Christopher A. Wassif

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Yanjanin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Ory

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

William J. Pavan

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Rohini Sidhu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nicole Y. Farhat

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Simona Bianconi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xuntian Jiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert D. Steiner

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge