Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Y. Farhat is active.

Publication


Featured researches published by Nicole Y. Farhat.


Science Translational Medicine | 2016

Development of a bile acid–based newborn screen for Niemann-Pick disease type C

Xuntian Jiang; Rohini Sidhu; Laurel Mydock-McGrane; Fong-Fu Hsu; Douglas F. Covey; David E. Scherrer; Brian James Earley; Sarah E. Gale; Nicole Y. Farhat; Forbes D. Porter; Dennis J. Dietzen; Joseph J. Orsini; Elizabeth Berry-Kravis; Xiaokui Zhang; Janice Reunert; Thorsten Marquardt; Heiko Runz; Roberto Giugliani; Jean E. Schaffer; Daniel S. Ory

A newborn screen for Niemann-Pick disease type C was developed on the basis of discovery of a bile acid marker. Expanding the newborn screen Niemann-Pick disease type C (NPC) is a fatal neurologic disorder caused by the deficiency of an enzyme involved in cholesterol storage. Although this disease was untreatable in the past, new therapeutics are now in clinical trials, but they are most likely to be effective if treatment is started as early as possible, before neurodegeneration has occurred. Jiang et al. identified three bile acids that are greatly increased in the blood of patients with NPC compared to healthy controls. The authors also demonstrated that one of these bile acids can be reliably measured in dried blood spots using mass spectrometry, suggesting that this bile acid test should be evaluated for potential addition to neonatal screening programs. Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput mass spectrometry–based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs.


The Lancet | 2017

Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial

Daniel S. Ory; Elizabeth A. Ottinger; Nicole Y. Farhat; Kelly A. King; Xuntian Jiang; Lisa Weissfeld; Elizabeth Berry-Kravis; Cristin Davidson; Simona Bianconi; Lee Ann Keener; Ravichandran Rao; Ariane Soldatos; Rohini Sidhu; Kimberly A Walters; Xin Xu; Audrey Thurm; Beth Solomon; William J. Pavan; Bernardus N Machielse; Mark Kao; Steven A. Silber; John C. McKew; Carmen C. Brewer; Charles H. Vite; Steven U. Walkley; Christopher P. Austin; Forbes D. Porter

BACKGROUND Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-β-cyclodextrins (HPβCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPβCD. METHODS In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPβCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPβCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPβCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPβCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPβCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPβCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION Patients with NPC1 treated with intrathecal HPβCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPβCD. FUNDING National Institutes of Health, Danas Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samanthas Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.


Molecular Genetics and Metabolism | 2015

Intrathecal 2-hydroxypropyl-beta-cyclodextrin in a single patient with Niemann-Pick C1

Timothy Maarup; Agnes H. Chen; Forbes D. Porter; Nicole Y. Farhat; Daniel S. Ory; Rohini Sidhu; Xuntian Jiang; Patricia Dickson

Niemann-Pick C, type 1 (NPC1) is a progressive autosomal recessive neurologic disease caused by defective intracellular cholesterol and lipid trafficking. There are currently no United States Food and Drug Administration approved treatments for NPC1. We undertook a study evaluating the safety, efficacy, and biomarker response of intrathecal 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in a 12-year old subject with mildly symptomatic NPC. The subject received 200mg intrathecal HP-β-CD administered biweekly via lumbar puncture. To date the subject has received 27 intrathecal HP-β-CD injections. Intrathecal HP-β-CD has been generally safe and well tolerated in this subject. There has been an improvement in vertical gaze. The subject has developed subclinical hearing loss at high frequency that is likely HP-β-CD related. Plasma 24-(S)-hydroxycholesterol, a pharmacodynamic biomarker for cholesterol redistribution in the central nervous system, was significantly increased in response to each of the first 5 drug administrations. Further dosing as well as dose escalations are needed to more completely ascertain the safety and efficacy of intrathecal HP-β-CD.


Journal of Lipid Research | 2015

A validated LC-MS/MS assay for quantification of 24(S)-hydroxycholesterol in plasma and cerebrospinal fluid

Rohini Sidhu; Hui-Hui Jiang; Nicole Y. Farhat; Nuria Carrillo-Carrasco; Myra Woolery; Elizabeth A. Ottinger; Forbes D. Porter; Jean E. Schaffer; Daniel S. Ory; Xuntian Jiang

24(S)-hydroxycholesterol [24(S)-HC] is a cholesterol metabolite that is formed almost exclusively in the brain. The concentrations of 24(S)-HC in cerebrospinal fluid (CSF) and/or plasma might be a sensitive marker of altered cholesterol metabolism in the CNS. A highly sensitive 2D-LC-MS/MS assay was developed for the quantification of 24(S)-HC in human plasma and CSF. In the development of an assay for 24(S)-HC in CSF, significant nonspecific binding of 24(S)-HC was observed and resolved with the addition of 2.5% 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) into CSF samples. The sample preparation consists of liquid-liquid extraction with methyl-tert-butyl ether and derivatization with nicotinic acid. Good linearity was observed in a range from 1 to 200 ng/ml and from 0.025 to 5 ng/ml, for plasma and CSF, respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. Stability of 24(S)-HC was reported under a variety of storage conditions. This method has been successfully applied to support a National Institutes of Health-sponsored clinical trial of HP-β-CD in Niemann-Pick type C1 patients, in which 24(S)-HC is used as a pharmacodynamic biomarker.


Journal of Pharmacology and Experimental Therapeutics | 2016

Cerebrospinal Fluid Calbindin D Concentration as a Biomarker of Cerebellar Disease Progression in Niemann-Pick Type C1 Disease.

Allison Bradbury; Jessica H. Bagel; Maureen Sampson; Nicole Y. Farhat; Wenge Ding; Gary P. Swain; Maria Prociuk; Patricia O'Donnell; Kenneth J. Drobatz; Brittney L. Gurda; Christopher A. Wassif; Alan T. Remaley; Forbes D. Porter; Charles H. Vite

Niemann-Pick type C (NPC) 1 disease is a rare, inherited, neurodegenerative disease. Clear evidence of the therapeutic efficacy of 2-hydroxypropyl-β-cyclodextrin (HPβCD) in animal models resulted in the initiation of a phase I/IIa clinical trial in 2013 and a phase IIb/III trial in 2015. With clinical trials ongoing, validation of a biomarker to track disease progression and serve as a supporting outcome measure of therapeutic efficacy has become compulsory. In this study, we evaluated calcium-binding protein calbindin D-28K (calbindin) concentrations in the cerebrospinal fluid (CSF) as a biomarker of NPC1 disease. In the naturally occurring feline model, CSF calbindin was significantly elevated at 3 weeks of age, prior to the onset of cerebellar dysfunction, and steadily increased to >10-fold over normal at end-stage disease. Biweekly intrathecal administration of HPβCD initiated prior to the onset of neurologic dysfunction completely normalized CSF calbindin in NPC1 cats at all time points analyzed when followed up to 78 weeks of age. Initiation of HPβCD after the onset of clinical signs (16 weeks of age) resulted in a delayed reduction of calbindin levels in the CSF. Evaluation of CSF from patients with NPC1 revealed that calbindin concentrations were significantly elevated compared with CSF samples collected from unaffected patients. Off-label treatment of patients with NPC1 with miglustat, an inhibitor of glycosphingolipid biosynthesis, significantly decreased CSF calbindin compared with pretreatment concentrations. These data suggest that the CSF calbindin concentration is a sensitive biomarker of NPC1 disease that could be instrumental as an outcome measure of therapeutic efficacy in ongoing clinical trials.


Scientific Reports | 2017

NMR analysis reveals significant differences in the plasma metabolic profiles of Niemann Pick C1 patients, heterozygous carriers, and healthy controls

Fay Probert; Victor Ruiz-Rodado; Danielle te Vruchte; Elena-Raluca Nicoli; Timothy D. W. Claridge; Christopher A. Wassif; Nicole Y. Farhat; Forbes D. Porter; Frances M. Platt; Martin Grootveld

Niemann-Pick type C1 (NPC1) disease is a rare autosomal recessive, neurodegenerative lysosomal storage disorder, which presents with a range of clinical phenotypes and hence diagnosis remains a challenge. In view of these difficulties, the search for a novel, NPC1-specific biomarker (or set of biomarkers) is a topic of much interest. Here we employed high-resolution 1H nuclear magnetic resonance spectroscopy coupled with advanced multivariate analysis techniques in order to explore and seek differences between blood plasma samples acquired from NPC1 (untreated and miglustat treated), heterozygote, and healthy control subjects. Using this approach, we were able to identify NPC1 disease with 91% accuracy confirming that there are significant differences in the NMR plasma metabolic profiles of NPC1 patients when compared to healthy controls. The discrimination between NPC1 (both miglustat treated and untreated) and healthy controls was dominated by lipoprotein triacylglycerol 1H NMR resonances and isoleucine. Heterozygote plasma samples displayed also increases in the intensities of selected lipoprotein triacylglycerol 1H NMR signals over those of healthy controls. The metabolites identified could represent useful biomarkers in the future and provide valuable insight in to the underlying pathology of NPC1 disease.


Diseases | 2016

Role of Diffusion Tensor Imaging in Prognostication and Treatment Monitoring in Niemann-Pick Disease Type C1

Meghann W. Lau; Ryan W. Lee; Robin Miyamoto; Eun Sol Jung; Nicole Y. Farhat; Shoko Yoshida; Susumu Mori; Andrea Gropman; Eva H. Baker; Forbes D. Porter

Niemann-Pick Disease, type C1 (NPC1) is a rapidly progressive neurodegenerative disorder characterized by cholesterol sequestration within late endosomes and lysosomes, for which no reliable imaging marker exists for prognostication and management. Cerebellar volume deficits are found to correlate with disease severity and diffusion tensor imaging (DTI) of the corpus callosum and brainstem, which has shown that microstructural disorganization is associated with NPC1 severity. This study investigates the utility of cerebellar DTI in clinical severity assessment. We hypothesize that cerebellar volume, fractional anisotropy (FA) and mean diffusivity (MD) negatively correlate with NIH NPC neurological severity score (NNSS) and motor severity subscores. Magnetic resonance imaging (MRI) was obtained for thirty-nine NPC1 subjects, ages 1–21.9 years (mean = 11.1, SD = 6.1). Using an atlas-based automated approach, the cerebellum of each patient was measured for FA, MD and volume. Additionally, each patient was given an NNSS. Decreased cerebellar FA and volume, and elevated MD correlate with higher NNSS. The cognition subscore and motor subscores for eye movement, ambulation, speech, swallowing, and fine motor skills were also statistically significant. Microstructural disorganization negatively correlated with motor severity in subjects. Additionally, Miglustat therapy correlated with lower severity scores across ranges of FA, MD and volume in all regions except the inferior peduncle, where a paradoxical effect was observed at high FA values. These findings suggest that DTI is a promising prognostication tool.


Developmental Medicine & Child Neurology | 2016

Cohort study of neurocognitive functioning and adaptive behaviour in children and adolescents with Niemann-Pick Disease type C1.

Audrey Thurm; Cristan Farmer; Nicole Y. Farhat; Edythe Wiggs; David Black; Forbes D. Porter

To describe the neurocognitive and adaptive behavior profile of children and adolescents with Niemann–Pick Disease type C1 (NPC1), a rare genetic disease that frequently presents in childhood, with variable onset and symptom complex involving neurodegeneration.


American Journal of Medical Genetics Part A | 2017

Association of NPC1 variant p.P237S with a pathogenic splice variant in two Niemann-Pick disease type C1 patients

Alexander Salman; Antony Cougnoux; Nicole Y. Farhat; Christopher A. Wassif; Forbes D. Porter

Conflict of interest: The authors report no conflicts of interest. Grant sponsor: Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Correspondence to: Forbes D. Porter, M.D., Ph.D, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10-CRC, Room 5-2571, 10 Center Drive, Bethesda, MD 20892. E-mail: [email protected] Article first published online in Wiley Online Library (wileyonlinelibrary.com) DOI 10.1002/ajmg.a.38104 How to Cite this Article: Salman A, Cougnoux A, Farhat N, Wassif CA, Porter FD. 2017. Association of NPC1 variant p.P237S with a pathogenic splice variant in two Niemann–Pick disease type C1 patients.


Molecular Genetics and Metabolism | 2018

Diagnosis of niemann-pick C1 by measurement of bile acid biomarkers in archived newborn dried blood spots

Xuntian Jiang; Rohini Sidhu; Joseph J. Orsini; Nicole Y. Farhat; Forbes D. Porter; Elizabeth Berry-Kravis; Jean E. Schaffer; Daniel S. Ory

BACKGROUND Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3β,5α,6β-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.

Collaboration


Dive into the Nicole Y. Farhat's collaboration.

Top Co-Authors

Avatar

Forbes D. Porter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Ory

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Rohini Sidhu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Xuntian Jiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Wassif

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jean E. Schaffer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alexander Salman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Antony Cougnoux

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles H. Vite

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Ottinger

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge