Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Forest Isbell is active.

Publication


Featured researches published by Forest Isbell.


Nature | 2011

High plant diversity is needed to maintain ecosystem services

Forest Isbell; Vincent Calcagno; Andy Hector; John Connolly; W. Stanley Harpole; Peter B. Reich; Michael Scherer-Lorenzen; Bernhard Schmid; David Tilman; Jasper van Ruijven; Alexandra Weigelt; Brian J. Wilsey; Erika S. Zavaleta; Michel Loreau

Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.


Science | 2012

Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades

Peter B. Reich; David Tilman; Forest Isbell; Kevin E. Mueller; Sarah E. Hobbie; Dan F. B. Flynn; Nico Eisenhauer

Give It Time Experimental ecological studies in recent years have provided a great deal of insight into how species diversify and influence ecosystem properties, but in most cases the experiments have been relatively brief (up to ∼5 years). Reich et al. (p. 589; see the Perspective by Cardinale) performed two 13- and 15-year grassland experiments and found that the effects of plant species richness on community-level processes like biomass production tend to be saturating at early stages but that those impacts grow stronger and more linear as experiments run longer. Stronger influences through time were largely driven by increasing amounts of “complementarity” among species, and these trends were correlated with greater expression of functional diversity in multispecies assemblages. Thus, the effects of diversity grow stronger through time as species gain more and more opportunity to vary in their use of the limiting biological resources in their environment, which emphasizes the functional importance of maintaining diversity in ecosystems. Long-term grassland experiments show that high-diversity species combinations become more functionally diverse with time. Plant diversity generally promotes biomass production, but how the shape of the response curve changes with time remains unclear. This is a critical knowledge gap because the shape of this relationship indicates the extent to which loss of the first few species will influence biomass production. Using two long-term (≥13 years) biodiversity experiments, we show that the effects of diversity on biomass productivity increased and became less saturating over time. Our analyses suggest that effects of diversity-dependent ecosystem feedbacks and interspecific complementarity accumulate over time, causing high-diversity species combinations that appeared functionally redundant during early years to become more functionally unique through time. Consequently, simplification of diverse ecosystems will likely have greater negative impacts on ecosystem functioning than has been suggested by short-term experiments.


Nature | 2015

Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes

Forest Isbell; Dylan Craven; John Connolly; Michael Loreau; Bernhard Schmid; Carl Beierkuhnlein; T. Martin Bezemer; Catherine L. Bonin; Helge Bruelheide; Enrica De Luca; Anne Ebeling; John N. Griffin; Qinfeng Guo; Yann Hautier; Andy Hector; Anke Jentsch; Jürgen Kreyling; Vojtěch Lanta; Peter Manning; Sebastian T. Meyer; Akira Mori; Shahid Naeem; Pascal A. Niklaus; H. Wayne Polley; Peter B. Reich; Christiane Roscher; Eric W. Seabloom; Melinda D. Smith; Madhav P. Thakur; David Tilman

It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory

David Tilman; Peter B. Reich; Forest Isbell

Although the impacts of the loss of biodiversity on ecosystem functioning are well established, the importance of the loss of biodiversity relative to other human-caused drivers of environmental change remains uncertain. Results of 11 experiments show that ecologically relevant decreases in grassland plant diversity influenced productivity at least as much as ecologically relevant changes in nitrogen, water, CO2, herbivores, drought, or fire. Moreover, biodiversity became an increasingly dominant driver of ecosystem productivity through time, whereas effects of other factors either declined (nitrogen addition) or remained unchanged (all others). In particular, a change in plant diversity from four to 16 species caused as large an increase in productivity as addition of 54 kg⋅ha−1⋅y−1 of fertilizer N, and was as influential as removing a dominant herbivore, a major natural drought, water addition, and fire suppression. A change in diversity from one to 16 species caused a greater biomass increase than 95 kg⋅ha−1⋅y−1 of N or any other treatment. Our conclusions are based on >7,000 productivity measurements from 11 long-term experiments (mean length, ∼ 13 y) conducted at a single site with species from a single regional species pool, thus controlling for many potentially confounding factors. Our results suggest that the loss of biodiversity may have at least as great an impact on ecosystem functioning as other anthropogenic drivers of environmental change, and that use of diverse mixtures of species may be as effective in increasing productivity of some biomass crops as fertilization and may better provide ecosystem services.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity

Forest Isbell; Peter B. Reich; David Tilman; Sarah E. Hobbie; Stephen Polasky; Seth Binder

Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.


Ecology Letters | 2009

Biodiversity, productivity and the temporal stability of productivity: patterns and processes

Forest Isbell; H. Wayne Polley; Brian J. Wilsey

Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identified the mechanisms involved. Additionally, we tested whether biodiversity, productivity and temporal stability were similarly influenced by particular types of species interactions. We found that productivity was less variable among years in plots planted with more species. Temporal stability did not depend on whether the species were planted equally abundant (high evenness) or not (realistically low evenness). Greater richness increased temporal stability by increasing overyielding, asynchrony of species fluctuations and statistical averaging. Species interactions that favoured unproductive species increased both biodiversity and temporal stability. Species interactions that resulted in niche partitioning or facilitation increased both productivity and temporal stability. Thus, species interactions can promote biodiversity and ecosystem services.


Nature Communications | 2015

Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

Jonathan S. Lefcheck; Jarrett E. Byrnes; Forest Isbell; Lars Gamfeldt; John N. Griffin; Nico Eisenhauer; Marc J. S. Hensel; Andy Hector; Bradley J. Cardinale; James Emmett Duffy

The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversitys effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversitys effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.


Methods in Ecology and Evolution | 2014

Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions

Jarrett E. Byrnes; Lars Gamfeldt; Forest Isbell; Jonathan S. Lefcheck; John N. Griffin; Andy Hector; Bradley J. Cardinale; David U. Hooper; Laura E. Dee; J. Emmett Duffy

Summary Extensive research shows that more species-rich assemblages are generally more productive and efficient in resource use than comparable assemblages with fewer species. But the question of how diversity simultaneously affects the wide variety of ecological functions that ecosystems perform remains relatively understudied. It presents several analytical and empirical challenges that remain unresolved. In particular, researchers have developed several disparate metrics to quantify multifunctionality, each characterizing different aspects of the concept and each with pros and cons. We compare four approaches to characterizing multifunctionality and its dependence on biodiversity, quantifying (i) magnitudes of multiple individual functions separately, (ii) the extent to which different species promote different functions, (iii) the average level of a suite of functions and (iv) the number of functions that simultaneously exceeds a critical threshold. We illustrate each approach using data from the pan-European BIODEPTH experiment and the R multifunc package developed for this purpose, evaluate the strengths and weaknesses of each approach and implement several methodological improvements. We conclude that an extension of the fourth approach that systematically explores all possible threshold values provides the most comprehensive description of multifunctionality to date. We outline this method and recommend its use in future research.


Science | 2015

Anthropogenic environmental changes affect ecosystem stability via biodiversity

Yann Hautier; David Tilman; Forest Isbell; Eric W. Seabloom; Elizabeth T. Borer; Peter B. Reich

Biodiversity protects grassland stability How biodiversity interacts with ecosystem stability and productivity is key to understanding the impacts of environmental changes on ecosystem functions. In a series of decade-long experiments in temperate grassland, Hautier et al. manipulated nitrogen, water, carbon dioxide, herbivory, and fire. In all cases, plant species diversity was important for preserving ecosystem function during environmental change. Hence, the preservation and restoration of biodiversity buffer ecosystems against anthropogenic assault. Science, this issue p. 336 Experiments in grassland show that ecosystem stability is affected more by changes in biodiversity than in productivity. Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth’s ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.


Ecology Letters | 2013

Low biodiversity state persists two decades after cessation of nutrient enrichment

Forest Isbell; David Tilman; Stephen Polasky; Seth Binder; Peter Hawthorne

Although nutrient enrichment frequently decreases biodiversity, it remains unclear whether such biodiversity losses are readily reversible, or are critical transitions between alternative low- and high-diversity stable states that could be difficult to reverse. Our 30-year grassland experiment shows that plant diversity decreased well below control levels after 10 years of chronic high rates (95-270 kg N ha(-1) year(-1)) of nitrogen addition, and did not recover to control levels 20 years after nitrogen addition ceased. Furthermore, we found a hysteretic response of plant diversity to increases and subsequent decreases in soil nitrate concentrations. Our results suggest that chronic nutrient enrichment created an alternative low-diversity state that persisted despite decreases in soil nitrate after cessation of nitrogen addition, and despite supply of propagules from nearby high-diversity plots. Thus, the regime shifts between alternative stable states that have been reported for some nutrient-enriched aquatic ecosystems may also occur in grasslands.

Collaboration


Dive into the Forest Isbell's collaboration.

Top Co-Authors

Avatar

David Tilman

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Wayne Polley

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Roscher

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge